إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
اطرح من .
خطوة 3
خطوة 3.1
أوجِد مشتقة بالنسبة إلى .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .
خطوة 4
خطوة 4.1
عوّض بـ عن وبـ عن .
خطوة 4.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 5
عيّن لتساوي تكامل .
خطوة 6
خطوة 6.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6.3
بسّط الإجابة.
خطوة 6.3.1
أعِد كتابة بالصيغة .
خطوة 6.3.2
بسّط.
خطوة 6.3.2.1
اجمع و.
خطوة 6.3.2.2
اجمع و.
خطوة 6.3.2.3
انقُل إلى يسار .
خطوة 6.3.2.4
احذِف العامل المشترك لـ و.
خطوة 6.3.2.4.1
أخرِج العامل من .
خطوة 6.3.2.4.2
ألغِ العوامل المشتركة.
خطوة 6.3.2.4.2.1
أخرِج العامل من .
خطوة 6.3.2.4.2.2
ألغِ العامل المشترك.
خطوة 6.3.2.4.2.3
أعِد كتابة العبارة.
خطوة 6.3.2.4.2.4
اقسِم على .
خطوة 7
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 8
عيّن .
خطوة 9
خطوة 9.1
أوجِد مشتقة بالنسبة إلى .
خطوة 9.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9.3
احسِب قيمة .
خطوة 9.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 9.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 9.3.3
اضرب في .
خطوة 9.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 9.5
أعِد ترتيب الحدود.
خطوة 10
خطوة 10.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 10.1.1
أضف إلى كلا المتعادلين.
خطوة 10.1.2
جمّع الحدود المتعاكسة في .
خطوة 10.1.2.1
أضف و.
خطوة 10.1.2.2
أضف و.
خطوة 11
خطوة 11.1
أوجِد تكامل كلا طرفي .
خطوة 11.2
احسِب قيمة .
خطوة 11.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 12
عوّض عن في .
خطوة 13
اجمع و.