إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 1.2
أخرِج عامل من .
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أعِد ترتيب و.
خطوة 2
افترض أن . عوّض بـ عن .
خطوة 3
أوجِد قيمة في .
خطوة 4
استخدِم قاعدة الضرب لإيجاد مشتق بالنسبة إلى .
خطوة 5
عوّض بقيمة التي تساوي .
خطوة 6
خطوة 6.1
افصِل المتغيرات.
خطوة 6.1.1
أوجِد قيمة .
خطوة 6.1.1.1
أعِد ترتيب العوامل في .
خطوة 6.1.1.2
اطرح من كلا المتعادلين.
خطوة 6.1.1.3
اقسِم كل حد في على وبسّط.
خطوة 6.1.1.3.1
اقسِم كل حد في على .
خطوة 6.1.1.3.2
بسّط الطرف الأيسر.
خطوة 6.1.1.3.2.1
ألغِ العامل المشترك لـ .
خطوة 6.1.1.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.1.2
اقسِم على .
خطوة 6.1.1.3.3
بسّط الطرف الأيمن.
خطوة 6.1.1.3.3.1
انقُل السالب أمام الكسر.
خطوة 6.1.2
حلّل إلى عوامل.
خطوة 6.1.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.1.2.2
أخرِج العامل من .
خطوة 6.1.2.2.1
أخرِج العامل من .
خطوة 6.1.2.2.2
أخرِج العامل من .
خطوة 6.1.2.2.3
أخرِج العامل من .
خطوة 6.1.3
اضرب كلا الطرفين في .
خطوة 6.1.4
ألغِ العامل المشترك لـ .
خطوة 6.1.4.1
ألغِ العامل المشترك.
خطوة 6.1.4.2
أعِد كتابة العبارة.
خطوة 6.1.5
أعِد كتابة المعادلة.
خطوة 6.2
أوجِد تكامل كلا الطرفين.
خطوة 6.2.1
عيّن التكامل في كل طرف.
خطوة 6.2.2
أوجِد تكامل الطرف الأيسر.
خطوة 6.2.2.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 6.2.2.1.1
افترض أن . أوجِد .
خطوة 6.2.2.1.1.1
أوجِد مشتقة .
خطوة 6.2.2.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 6.2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 6.2.2.2
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 6.2.2.2.1
افترض أن . أوجِد .
خطوة 6.2.2.2.1.1
أوجِد مشتقة .
خطوة 6.2.2.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.2.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.2.2.2.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.2.2.1.5
أضف و.
خطوة 6.2.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 6.2.2.3
تكامل بالنسبة إلى هو .
خطوة 6.2.2.4
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
خطوة 6.2.2.4.1
استبدِل كافة حالات حدوث بـ .
خطوة 6.2.2.4.2
استبدِل كافة حالات حدوث بـ .
خطوة 6.2.3
تكامل بالنسبة إلى هو .
خطوة 6.2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 6.3
أوجِد قيمة .
خطوة 6.3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 6.3.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 6.3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.3.5
أوجِد قيمة .
خطوة 6.3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.3.5.2
اضرب كلا الطرفين في .
خطوة 6.3.5.3
بسّط الطرف الأيسر.
خطوة 6.3.5.3.1
ألغِ العامل المشترك لـ .
خطوة 6.3.5.3.1.1
ألغِ العامل المشترك.
خطوة 6.3.5.3.1.2
أعِد كتابة العبارة.
خطوة 6.3.5.4
أوجِد قيمة .
خطوة 6.3.5.4.1
أعِد ترتيب العوامل في .
خطوة 6.3.5.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 6.3.5.4.3
أضف إلى كلا المتعادلين.
خطوة 6.3.5.4.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.3.5.4.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.3.5.4.6
أوجِد قيمة .
خطوة 6.3.5.4.6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.3.5.4.6.2
أعِد ترتيب العوامل في .
خطوة 6.4
جمّع حدود الثابت معًا.
خطوة 6.4.1
بسّط ثابت التكامل.
خطوة 6.4.2
اجمع الثوابت مع الزائد أو الناقص.
خطوة 7
عوّض بقيمة التي تساوي .
خطوة 8
خطوة 8.1
اضرب كلا الطرفين في .
خطوة 8.2
بسّط.
خطوة 8.2.1
بسّط الطرف الأيسر.
خطوة 8.2.1.1
ألغِ العامل المشترك لـ .
خطوة 8.2.1.1.1
ألغِ العامل المشترك.
خطوة 8.2.1.1.2
أعِد كتابة العبارة.
خطوة 8.2.2
بسّط الطرف الأيمن.
خطوة 8.2.2.1
أعِد ترتيب العوامل في .