إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
انقُل إلى يسار .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
انقُل إلى يسار .
خطوة 1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5.2
أضف و.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
أعِد الترتيب.
خطوة 2.4.1
انقُل إلى يسار .
خطوة 2.4.2
أعِد ترتيب عوامل .
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.1.1
أخرِج العامل من .
خطوة 4.3.2.1.2
أخرِج العامل من .
خطوة 4.3.2.1.3
أخرِج العامل من .
خطوة 4.3.2.1.4
أخرِج العامل من .
خطوة 4.3.2.1.5
أخرِج العامل من .
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
جمّع الحدود المتعاكسة في .
خطوة 4.3.2.3.1
اطرح من .
خطوة 4.3.2.3.2
أضف و.
خطوة 4.3.2.4
اجمع الأُسس.
خطوة 4.3.2.4.1
ارفع إلى القوة .
خطوة 4.3.2.4.2
ارفع إلى القوة .
خطوة 4.3.2.4.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.2.4.4
أضف و.
خطوة 4.3.3
ألغِ العامل المشترك لـ .
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
ألغِ العامل المشترك لـ .
خطوة 4.3.4.1
ألغِ العامل المشترك.
خطوة 4.3.4.2
اقسِم على .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
طبّق قاعدة الثابت.
خطوة 5.2
بسّط.
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
طبّق خاصية التوزيع.
خطوة 6.3
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.3
بسّط الإجابة.
خطوة 8.3.1
أعِد كتابة بالصيغة .
خطوة 8.3.2
بسّط.
خطوة 8.3.2.1
اجمع و.
خطوة 8.3.2.2
اجمع و.
خطوة 8.3.2.3
اجمع و.
خطوة 8.3.3
أعِد ترتيب الحدود.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
خطوة 11.3.1
اجمع و.
خطوة 11.3.2
اجمع و.
خطوة 11.3.3
اجمع و.
خطوة 11.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.5
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 11.3.6
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 11.3.6.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 11.3.6.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 11.3.6.3
استبدِل كافة حالات حدوث بـ .
خطوة 11.3.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.10
اضرب في .
خطوة 11.3.11
انقُل إلى يسار .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
خطوة 11.5.1
طبّق خاصية التوزيع.
خطوة 11.5.2
جمّع الحدود.
خطوة 11.5.2.1
اجمع و.
خطوة 11.5.2.2
اجمع و.
خطوة 11.5.2.3
اجمع و.
خطوة 11.5.2.4
ألغِ العامل المشترك لـ .
خطوة 11.5.2.4.1
ألغِ العامل المشترك.
خطوة 11.5.2.4.2
اقسِم على .
خطوة 11.5.2.5
اجمع و.
خطوة 11.5.2.6
اجمع و.
خطوة 11.5.2.7
اجمع و.
خطوة 11.5.2.8
ألغِ العامل المشترك لـ .
خطوة 11.5.2.8.1
ألغِ العامل المشترك.
خطوة 11.5.2.8.2
اقسِم على .
خطوة 11.5.3
أعِد ترتيب الحدود.
خطوة 11.5.4
أعِد ترتيب العوامل في .
خطوة 12
خطوة 12.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 12.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.2
اطرح من كلا المتعادلين.
خطوة 12.1.3
جمّع الحدود المتعاكسة في .
خطوة 12.1.3.1
اطرح من .
خطوة 12.1.3.2
أضف و.
خطوة 12.1.3.3
أعِد ترتيب العوامل في الحدين و.
خطوة 12.1.3.4
اطرح من .
خطوة 12.1.3.5
أضف و.
خطوة 13
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 13.4.1
افترض أن . أوجِد .
خطوة 13.4.1.1
أوجِد مشتقة .
خطوة 13.4.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 13.4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 13.4.1.4
اضرب في .
خطوة 13.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 13.5
اجمع و.
خطوة 13.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.7
اجمع و.
خطوة 13.8
تكامل بالنسبة إلى هو .
خطوة 13.9
بسّط.
خطوة 13.10
استبدِل كافة حالات حدوث بـ .
خطوة 14
عوّض عن في .
خطوة 15
خطوة 15.1
بسّط كل حد.
خطوة 15.1.1
اجمع و.
خطوة 15.1.2
اجمع و.
خطوة 15.1.3
اجمع و.
خطوة 15.1.4
اجمع و.
خطوة 15.2
أعِد ترتيب العوامل في .