حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (xy^2+x^2y^2+3)dx+(x^2y)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
انقُل إلى يسار .
خطوة 1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
انقُل إلى يسار .
خطوة 1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5.2
أضف و.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
أعِد الترتيب.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
انقُل إلى يسار .
خطوة 2.4.2
أعِد ترتيب عوامل .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
أخرِج العامل من .
خطوة 4.3.2.1.2
أخرِج العامل من .
خطوة 4.3.2.1.3
أخرِج العامل من .
خطوة 4.3.2.1.4
أخرِج العامل من .
خطوة 4.3.2.1.5
أخرِج العامل من .
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.1
اطرح من .
خطوة 4.3.2.3.2
أضف و.
خطوة 4.3.2.4
اجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.4.1
ارفع إلى القوة .
خطوة 4.3.2.4.2
ارفع إلى القوة .
خطوة 4.3.2.4.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.2.4.4
أضف و.
خطوة 4.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
ألغِ العامل المشترك.
خطوة 4.3.4.2
اقسِم على .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
طبّق قاعدة الثابت.
خطوة 5.2
بسّط.
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
طبّق خاصية التوزيع.
خطوة 6.3
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
أعِد كتابة بالصيغة .
خطوة 8.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.2.1
اجمع و.
خطوة 8.3.2.2
اجمع و.
خطوة 8.3.2.3
اجمع و.
خطوة 8.3.3
أعِد ترتيب الحدود.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
اجمع و.
خطوة 11.3.2
اجمع و.
خطوة 11.3.3
اجمع و.
خطوة 11.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.5
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 11.3.6
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 11.3.6.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 11.3.6.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 11.3.6.3
استبدِل كافة حالات حدوث بـ .
خطوة 11.3.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.10
اضرب في .
خطوة 11.3.11
انقُل إلى يسار .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.1
طبّق خاصية التوزيع.
خطوة 11.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.2.1
اجمع و.
خطوة 11.5.2.2
اجمع و.
خطوة 11.5.2.3
اجمع و.
خطوة 11.5.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.5.2.4.1
ألغِ العامل المشترك.
خطوة 11.5.2.4.2
اقسِم على .
خطوة 11.5.2.5
اجمع و.
خطوة 11.5.2.6
اجمع و.
خطوة 11.5.2.7
اجمع و.
خطوة 11.5.2.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.5.2.8.1
ألغِ العامل المشترك.
خطوة 11.5.2.8.2
اقسِم على .
خطوة 11.5.3
أعِد ترتيب الحدود.
خطوة 11.5.4
أعِد ترتيب العوامل في .
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.2
اطرح من كلا المتعادلين.
خطوة 12.1.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.1
اطرح من .
خطوة 12.1.3.2
أضف و.
خطوة 12.1.3.3
أعِد ترتيب العوامل في الحدين و.
خطوة 12.1.3.4
اطرح من .
خطوة 12.1.3.5
أضف و.
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 13.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 13.4.1.1
أوجِد مشتقة .
خطوة 13.4.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 13.4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 13.4.1.4
اضرب في .
خطوة 13.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 13.5
اجمع و.
خطوة 13.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.7
اجمع و.
خطوة 13.8
تكامل بالنسبة إلى هو .
خطوة 13.9
بسّط.
خطوة 13.10
استبدِل كافة حالات حدوث بـ .
خطوة 14
عوّض عن في .
خطوة 15
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 15.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 15.1.1
اجمع و.
خطوة 15.1.2
اجمع و.
خطوة 15.1.3
اجمع و.
خطوة 15.1.4
اجمع و.
خطوة 15.2
أعِد ترتيب العوامل في .