حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (y اللوغاريتم الطبيعي لـ y-2xye^y)dx+x(1-xye^y)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
اجمع و.
خطوة 1.3.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1
ألغِ العامل المشترك.
خطوة 1.3.5.2
أعِد كتابة العبارة.
خطوة 1.3.6
اضرب في .
خطوة 1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.4.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.4.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.5
اضرب في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
طبّق خاصية التوزيع.
خطوة 1.5.2
احذِف الأقواس غير الضرورية.
خطوة 1.5.3
أعِد ترتيب الحدود.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
أضف و.
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.6
اضرب في .
خطوة 2.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8
اضرب في .
خطوة 2.4
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد ترتيب و.
خطوة 2.4.2
اطرح من .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
طبّق خاصية التوزيع.
خطوة 4.3.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1
اضرب في .
خطوة 4.3.2.2.2
اضرب في .
خطوة 4.3.2.2.3
اضرب في .
خطوة 4.3.2.3
احذِف الأقواس.
خطوة 4.3.2.4
أضف و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.4.1
انقُل .
خطوة 4.3.2.4.2
أضف و.
خطوة 4.3.2.5
أضف و.
خطوة 4.3.2.6
اطرح من .
خطوة 4.3.2.7
أضف و.
خطوة 4.3.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
أخرِج العامل من .
خطوة 4.3.3.2
أخرِج العامل من .
خطوة 4.3.3.3
أخرِج العامل من .
خطوة 4.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
أخرِج العامل من .
خطوة 4.3.4.3
أخرِج العامل من .
خطوة 4.3.4.4
أعِد كتابة بالصيغة .
خطوة 4.3.4.5
أعِد ترتيب الحدود.
خطوة 4.3.4.6
ألغِ العامل المشترك.
خطوة 4.3.4.7
أعِد كتابة العبارة.
خطوة 4.3.5
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
تكامل بالنسبة إلى هو .
خطوة 5.3
بسّط.
خطوة 5.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.4.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.4.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في .
خطوة 6.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
أخرِج العامل من .
خطوة 6.3.2
أخرِج العامل من .
خطوة 6.3.3
أخرِج العامل من .
خطوة 6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
ألغِ العامل المشترك.
خطوة 6.4.2
اقسِم على .
خطوة 6.5
اضرب في .
خطوة 6.6
طبّق خاصية التوزيع.
خطوة 6.7
اضرب في .
خطوة 6.8
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.9
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 6.9.1
انقُل .
خطوة 6.9.2
اضرب في .
خطوة 6.10
اضرب في .
خطوة 6.11
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.11.1
ارفع إلى القوة .
خطوة 6.11.2
أخرِج العامل من .
خطوة 6.11.3
أخرِج العامل من .
خطوة 6.11.4
أخرِج العامل من .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 8.2
طبّق قاعدة الثابت.
خطوة 8.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.5
بسّط.
خطوة 8.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.6.1
اجمع و.
خطوة 8.6.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 8.6.2.1
أخرِج العامل من .
خطوة 8.6.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 8.6.2.2.1
أخرِج العامل من .
خطوة 8.6.2.2.2
ألغِ العامل المشترك.
خطوة 8.6.2.2.3
أعِد كتابة العبارة.
خطوة 8.6.2.2.4
اقسِم على .
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
مشتق بالنسبة إلى يساوي .
خطوة 11.3.3
اجمع و.
خطوة 11.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 11.5
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.6.1
أعِد ترتيب الحدود.
خطوة 11.6.2
أعِد ترتيب العوامل في .
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
انقُل كل الحدود التي تحتوي على متغيرات إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.2
اجمع البسوط على القاسم المشترك.
خطوة 12.1.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.1
طبّق خاصية التوزيع.
خطوة 12.1.3.2
اضرب في .
خطوة 12.1.3.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.3.1
انقُل .
خطوة 12.1.3.3.2
اضرب في .
خطوة 12.1.3.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.4.1
اضرب في .
خطوة 12.1.3.4.2
اضرب في .
خطوة 12.1.4
اطرح من .
خطوة 12.1.5
أضف و.
خطوة 12.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.6.1
ألغِ العامل المشترك.
خطوة 12.1.6.2
اقسِم على .
خطوة 12.1.7
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.7.1
أضف و.
خطوة 12.1.7.2
أضف و.
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
تكامل بالنسبة إلى هو .
خطوة 13.4
أضف و.
خطوة 14
عوّض عن في .
خطوة 15
أعِد ترتيب العوامل في .