حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (y^2+3xy^3)dx+(1-xy)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
اطرح من .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
طبّق خاصية التوزيع.
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
اضرب في .
خطوة 4.3.2.4
اطرح من .
خطوة 4.3.2.5
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.5.1
أخرِج العامل من .
خطوة 4.3.2.5.2
أخرِج العامل من .
خطوة 4.3.2.5.3
أخرِج العامل من .
خطوة 4.3.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
اضرب في .
خطوة 4.3.3.2
أخرِج العامل من .
خطوة 4.3.3.3
أخرِج العامل من .
خطوة 4.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.2.1
أخرِج العامل من .
خطوة 4.3.4.2.2
ألغِ العامل المشترك.
خطوة 4.3.4.2.3
أعِد كتابة العبارة.
خطوة 4.3.5
أعِد ترتيب الحدود.
خطوة 4.3.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.6.1
أخرِج العامل من .
خطوة 4.3.6.2
أعِد كتابة بالصيغة .
خطوة 4.3.6.3
أخرِج العامل من .
خطوة 4.3.6.4
أعِد كتابة بالصيغة .
خطوة 4.3.6.5
ألغِ العامل المشترك.
خطوة 4.3.6.6
أعِد كتابة العبارة.
خطوة 4.3.7
اضرب في .
خطوة 4.3.8
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.3
اضرب في .
خطوة 5.4
تكامل بالنسبة إلى هو .
خطوة 5.5
بسّط.
خطوة 5.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.6.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.6.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في .
خطوة 6.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اضرب في .
خطوة 6.3.2
أخرِج العامل من .
خطوة 6.3.3
أخرِج العامل من .
خطوة 6.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
أخرِج العامل من .
خطوة 6.4.2
ألغِ العامل المشترك.
خطوة 6.4.3
أعِد كتابة العبارة.
خطوة 6.5
اضرب في .
خطوة 6.6
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
قسّم الكسر إلى عدة كسور.
خطوة 8.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 8.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
ألغِ العامل المشترك.
خطوة 8.3.2
اقسِم على .
خطوة 8.4
طبّق قاعدة الثابت.
خطوة 8.5
اجمع و.
خطوة 8.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.7
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.8
بسّط.
خطوة 8.9
اجمع و.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
أعِد كتابة بالصيغة .
خطوة 11.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.5
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.6.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 11.6.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 11.6.2.1
اجمع و.
خطوة 11.6.2.2
أضف و.
خطوة 11.6.3
أعِد ترتيب الحدود.
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
انقُل كل الحدود التي تحتوي على متغيرات إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.1.1.3
اجمع البسوط على القاسم المشترك.
خطوة 12.1.1.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.4.1
طبّق خاصية التوزيع.
خطوة 12.1.1.4.2
اضرب في .
خطوة 12.1.1.4.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.4.3.1
اضرب في .
خطوة 12.1.1.4.3.2
اضرب في .
خطوة 12.1.1.5
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.1.1.6
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.6.1
اضرب في .
خطوة 12.1.1.6.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.6.2.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.6.2.1.1
ارفع إلى القوة .
خطوة 12.1.1.6.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 12.1.1.6.2.2
أضف و.
خطوة 12.1.1.7
اجمع البسوط على القاسم المشترك.
خطوة 12.1.1.8
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.8.1
أضف و.
خطوة 12.1.1.8.2
أضف و.
خطوة 12.1.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 12.1.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.1
أضف إلى كلا المتعادلين.
خطوة 12.1.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.2.1
اقسِم كل حد في على .
خطوة 12.1.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 12.1.3.2.2.1.2
اقسِم على .
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
انقُل خارج القاسم برفعها إلى القوة .
خطوة 13.4
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 13.4.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 13.4.2
اضرب في .
خطوة 13.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 13.6
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 13.6.1
أعِد كتابة بالصيغة .
خطوة 13.6.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 13.6.2.1
اضرب في .
خطوة 13.6.2.2
انقُل إلى يسار .
خطوة 13.6.2.3
اضرب في .
خطوة 14
عوّض عن في .
خطوة 15
اجمع و.