حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (x+2/y)dy+ydx=0
خطوة 1
أعِد كتابة المعادلة التفاضلية لتناسب المعادلة التفضيلية التامة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد الكتابة.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة بالنسبة إلى .
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أضف و.
خطوة 4
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بـ عن وبـ عن .
خطوة 4.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 5
عيّن لتساوي تكامل .
خطوة 6
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
طبّق قاعدة الثابت.
خطوة 7
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 8
عيّن .
خطوة 9
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أوجِد مشتقة بالنسبة إلى .
خطوة 9.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 9.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 9.3.3
اضرب في .
خطوة 9.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 9.5
أعِد ترتيب الحدود.
خطوة 10
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1
اطرح من كلا المتعادلين.
خطوة 10.1.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 10.1.2.1
اطرح من .
خطوة 10.1.2.2
أضف و.
خطوة 11
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد تكامل كلا طرفي .
خطوة 11.2
احسِب قيمة .
خطوة 11.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11.4
تكامل بالنسبة إلى هو .
خطوة 11.5
بسّط.
خطوة 12
عوّض عن في .
خطوة 13
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
بسّط بنقل داخل اللوغاريتم.
خطوة 13.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.