إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد قيمة .
خطوة 1.1.1
أضف إلى كلا المتعادلين.
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
اقسِم على .
خطوة 1.1.2.3
بسّط الطرف الأيمن.
خطوة 1.1.2.3.1
بسّط كل حد.
خطوة 1.1.2.3.1.1
احذِف العامل المشترك لـ و.
خطوة 1.1.2.3.1.1.1
أخرِج العامل من .
خطوة 1.1.2.3.1.1.2
ألغِ العوامل المشتركة.
خطوة 1.1.2.3.1.1.2.1
أخرِج العامل من .
خطوة 1.1.2.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.3.1.2
احذِف العامل المشترك لـ و.
خطوة 1.1.2.3.1.2.1
ارفع إلى القوة .
خطوة 1.1.2.3.1.2.2
أخرِج العامل من .
خطوة 1.1.2.3.1.2.3
ألغِ العوامل المشتركة.
خطوة 1.1.2.3.1.2.3.1
أخرِج العامل من .
خطوة 1.1.2.3.1.2.3.2
ألغِ العامل المشترك.
خطوة 1.1.2.3.1.2.3.3
أعِد كتابة العبارة.
خطوة 1.2
حلّل إلى عوامل.
خطوة 1.2.1
اجمع البسوط على القاسم المشترك.
خطوة 1.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.2.3.1
اضرب في .
خطوة 1.2.3.2
ارفع إلى القوة .
خطوة 1.2.3.3
ارفع إلى القوة .
خطوة 1.2.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.3.5
أضف و.
خطوة 1.2.4
اجمع البسوط على القاسم المشترك.
خطوة 1.2.5
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.6
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.2.6.1
اضرب في .
خطوة 1.2.6.2
ارفع إلى القوة .
خطوة 1.2.6.3
ارفع إلى القوة .
خطوة 1.2.6.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.6.5
أضف و.
خطوة 1.2.7
اجمع البسوط على القاسم المشترك.
خطوة 1.2.8
بسّط بَسْط الكسر.
خطوة 1.2.8.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2.8.1.1
جمّع أول حدين وآخر حدين.
خطوة 1.2.8.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2.8.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.3
أعِد تجميع العوامل.
خطوة 1.4
اضرب كلا الطرفين في .
خطوة 1.5
ألغِ العامل المشترك لـ .
خطوة 1.5.1
ألغِ العامل المشترك.
خطوة 1.5.2
أعِد كتابة العبارة.
خطوة 1.6
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 2.2.1.1
افترض أن . أوجِد .
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.5
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
طبّق القواعد الأساسية للأُسس.
خطوة 2.3.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.1.2
اضرب الأُسس في .
خطوة 2.3.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.1.2.2
اضرب في .
خطوة 2.3.2
اضرب .
خطوة 2.3.3
بسّط.
خطوة 2.3.3.1
اضرب في .
خطوة 2.3.3.2
اضرب في بجمع الأُسس.
خطوة 2.3.3.2.1
اضرب في .
خطوة 2.3.3.2.1.1
ارفع إلى القوة .
خطوة 2.3.3.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.3.2.2
اطرح من .
خطوة 2.3.4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.6
تكامل بالنسبة إلى هو .
خطوة 2.3.7
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.5
أوجِد قيمة .
خطوة 3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 3.5.2
اضرب كلا الطرفين في .
خطوة 3.5.3
بسّط الطرف الأيسر.
خطوة 3.5.3.1
ألغِ العامل المشترك لـ .
خطوة 3.5.3.1.1
ألغِ العامل المشترك.
خطوة 3.5.3.1.2
أعِد كتابة العبارة.
خطوة 3.5.4
أوجِد قيمة .
خطوة 3.5.4.1
أعِد ترتيب العوامل في .
خطوة 3.5.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.5.4.3
أعِد ترتيب العوامل في .
خطوة 3.5.4.4
اطرح من كلا المتعادلين.
خطوة 4
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
أعِد ترتيب و.
خطوة 4.3
اجمع الثوابت مع الزائد أو الناقص.