حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dr)/(dtheta)=-rtan(theta) , r(pi)=2
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 1.2.2.2
أخرِج العامل من .
خطوة 1.2.2.3
ألغِ العامل المشترك.
خطوة 1.2.2.4
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
تكامل بالنسبة إلى هو .
خطوة 2.3.3
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 3.3
لضرب القيم المطلقة، اضرب الحدود الموجودة داخل كل قيمة مطلقة.
خطوة 3.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أعِد كتابة المعادلة في صورة .
خطوة 3.6.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.1
اقسِم كل حد في على .
خطوة 3.6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.6.3.2.1.2
اقسِم على .
خطوة 3.6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.3.1
افصِل الكسور.
خطوة 3.6.3.3.2
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 3.6.3.3.3
اضرب في مقلوب الكسر للقسمة على .
خطوة 3.6.3.3.4
اضرب في .
خطوة 3.6.3.3.5
اقسِم على .
خطوة 3.6.3.3.6
أعِد ترتيب العوامل في .
خطوة 4
بسّط ثابت التكامل.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اقسِم كل حد في على .
خطوة 6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.1.2
اقسِم على .
خطوة 6.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
افصِل الكسور.
خطوة 6.2.3.2
حوّل من إلى .
خطوة 6.2.3.3
اقسِم على .
خطوة 6.2.3.4
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن القاطع سالب في الربع الثاني.
خطوة 6.2.3.5
القيمة الدقيقة لـ هي .
خطوة 6.2.3.6
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.6.1
اضرب في .
خطوة 6.2.3.6.2
اضرب في .
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .
خطوة 7.2
انقُل إلى يسار .