حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(xy-y+x-1)/(x^2-4)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 1.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
أخرِج العامل من .
خطوة 1.4.1.2
ألغِ العامل المشترك.
خطوة 1.4.1.3
أعِد كتابة العبارة.
خطوة 1.4.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
أعِد كتابة بالصيغة .
خطوة 1.4.2.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.5
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اكتب الكسر باستخدام التفكيك الكسري الجزئي.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
فكّ الكسر واضرب في القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.1
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 2.3.1.1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 2.3.1.1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 2.3.1.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.4.1
ألغِ العامل المشترك.
خطوة 2.3.1.1.4.2
أعِد كتابة العبارة.
خطوة 2.3.1.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.5.1
ألغِ العامل المشترك.
خطوة 2.3.1.1.5.2
اقسِم على .
خطوة 2.3.1.1.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.6.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.6.1.1
ألغِ العامل المشترك.
خطوة 2.3.1.1.6.1.2
اقسِم على .
خطوة 2.3.1.1.6.2
طبّق خاصية التوزيع.
خطوة 2.3.1.1.6.3
انقُل إلى يسار .
خطوة 2.3.1.1.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.6.4.1
ألغِ العامل المشترك.
خطوة 2.3.1.1.6.4.2
اقسِم على .
خطوة 2.3.1.1.6.5
طبّق خاصية التوزيع.
خطوة 2.3.1.1.6.6
انقُل إلى يسار .
خطوة 2.3.1.1.7
انقُل .
خطوة 2.3.1.2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3.1.2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3.1.2.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 2.3.1.3
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.1
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 2.3.1.3.1.2
اطرح من كلا المتعادلين.
خطوة 2.3.1.3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.3.1.3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 2.3.1.3.2.2.1.1.2
اضرب في .
خطوة 2.3.1.3.2.2.1.1.3
اضرب في .
خطوة 2.3.1.3.2.2.1.2
أضف و.
خطوة 2.3.1.3.3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 2.3.1.3.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.1.3.3.2.2
أضف و.
خطوة 2.3.1.3.3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.3.3.1
اقسِم كل حد في على .
خطوة 2.3.1.3.3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.1.3.3.3.2.1.2
اقسِم على .
خطوة 2.3.1.3.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.3.1.3.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.4.2.1.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 2.3.1.3.4.2.1.2
اجمع البسوط على القاسم المشترك.
خطوة 2.3.1.3.4.2.1.3
اطرح من .
خطوة 2.3.1.3.5
اسرِد جميع الحلول.
خطوة 2.3.1.4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.
خطوة 2.3.1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.5.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.3.1.5.2
اضرب في .
خطوة 2.3.1.5.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.3.1.5.4
اضرب في .
خطوة 2.3.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.1
أوجِد مشتقة .
خطوة 2.3.4.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.5
أضف و.
خطوة 2.3.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.5
تكامل بالنسبة إلى هو .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.7
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1.1
أوجِد مشتقة .
خطوة 2.3.7.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7.1.5
أضف و.
خطوة 2.3.7.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.8
تكامل بالنسبة إلى هو .
خطوة 2.3.9
بسّط.
خطوة 2.3.10
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.10.1
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.10.2
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1.1
اجمع و.
خطوة 3.1.1.2
اجمع و.
خطوة 3.2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اضرب كل حد في في .
خطوة 3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
انقُل إلى يسار .
خطوة 3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.3.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.3.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.3.1.3
انقُل إلى يسار .
خطوة 3.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3.3.1.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 3.4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3.4.1.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 3.5
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.6
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 3.7
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.8
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.9
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.1
أعِد كتابة المعادلة في صورة .
خطوة 3.9.2
اضرب كلا الطرفين في .
خطوة 3.9.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.9.3.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.9.3.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.3.1.1.1
ألغِ العامل المشترك.
خطوة 3.9.3.1.1.2
أعِد كتابة العبارة.
خطوة 3.9.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.9.3.2.1
احذِف الأقواس.
خطوة 3.9.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.4.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.9.4.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.4.2.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.4.2.1.1
أعِد كتابة بالصيغة .
خطوة 3.9.4.2.1.2
أضف الأقواس.
خطوة 3.9.4.2.2
أخرِج الحدود من تحت الجذر.
خطوة 3.9.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.9.4.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.9.4.3.2
أعِد ترتيب العوامل في .
خطوة 3.9.4.3.3
اطرح من كلا المتعادلين.
خطوة 3.9.4.3.4
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.9.4.3.5
أعِد ترتيب العوامل في .
خطوة 3.9.4.3.6
اطرح من كلا المتعادلين.
خطوة 3.9.4.3.7
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.