حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)-y/x=x/y
خطوة 1
أعِد كتابة المعادلة التفاضلية في صورة الدالة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
أضف إلى كلا المتعادلين.
خطوة 1.1.2.2
أضف إلى كلا المتعادلين.
خطوة 1.2
أعِد كتابة بالصيغة .
خطوة 2
افترض أن . عوّض بـ عن .
خطوة 3
أوجِد قيمة في .
خطوة 4
استخدِم قاعدة الضرب لإيجاد مشتق بالنسبة إلى .
خطوة 5
عوّض بقيمة التي تساوي .
خطوة 6
أوجِد حل المعادلة التفاضلية المُعوض عنها.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.1.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.2.1
اطرح من كلا المتعادلين.
خطوة 6.1.1.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.2.2.1
اطرح من .
خطوة 6.1.1.2.2.2
أضف و.
خطوة 6.1.1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.1
اقسِم كل حد في على .
خطوة 6.1.1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.1.2
اقسِم على .
خطوة 6.1.1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.1.1.3.3.2
اضرب في .
خطوة 6.1.2
أعِد تجميع العوامل.
خطوة 6.1.3
اضرب كلا الطرفين في .
خطوة 6.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.1
اضرب في .
خطوة 6.1.4.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.2.1
أخرِج العامل من .
خطوة 6.1.4.2.2
ألغِ العامل المشترك.
خطوة 6.1.4.2.3
أعِد كتابة العبارة.
خطوة 6.1.5
أعِد كتابة المعادلة.
خطوة 6.2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
عيّن التكامل في كل طرف.
خطوة 6.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6.2.3
تكامل بالنسبة إلى هو .
خطوة 6.2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اضرب كلا المتعادلين في .
خطوة 6.3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.1
اجمع و.
خطوة 6.3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
طبّق خاصية التوزيع.
خطوة 6.3.3
بسّط بنقل داخل اللوغاريتم.
خطوة 6.3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.3.5
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 6.3.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.3.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.3.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6.4
بسّط ثابت التكامل.
خطوة 7
عوّض بقيمة التي تساوي .
خطوة 8
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أعِد الكتابة.
خطوة 8.2
اضرب كلا الطرفين في .
خطوة 8.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1.1
ألغِ العامل المشترك.
خطوة 8.3.1.2
أعِد كتابة العبارة.
خطوة 9
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أعِد الكتابة.
خطوة 9.2
اضرب كلا الطرفين في .
خطوة 9.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1.1
ألغِ العامل المشترك.
خطوة 9.3.1.2
أعِد كتابة العبارة.
خطوة 10
اسرِد الحلول.