إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على وبسّط.
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
خطوة 1.1.3.1
بسّط القاسم.
خطوة 1.1.3.1.1
أخرِج العامل من .
خطوة 1.1.3.1.1.1
أخرِج العامل من .
خطوة 1.1.3.1.1.2
أخرِج العامل من .
خطوة 1.1.3.1.1.3
أخرِج العامل من .
خطوة 1.1.3.1.2
أعِد كتابة بالصيغة .
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
بسّط.
خطوة 1.4.1
اضرب في .
خطوة 1.4.2
ألغِ العامل المشترك لـ .
خطوة 1.4.2.1
ألغِ العامل المشترك.
خطوة 1.4.2.2
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط الإجابة.
خطوة 2.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.2
بسّط.
خطوة 2.2.3.2.1
اجمع و.
خطوة 2.2.3.2.2
ألغِ العامل المشترك لـ .
خطوة 2.2.3.2.2.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.2.2
أعِد كتابة العبارة.
خطوة 2.2.3.2.3
اضرب في .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.1.1
افترض أن . أوجِد .
خطوة 2.3.1.1.1
أعِد الكتابة.
خطوة 2.3.1.1.2
اقسِم على .
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
قسّم الكسر إلى عدة كسور.
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.