إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
افترض أن جميع الحلول من صيغة .
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.2
أوجِد المشتق الثاني.
خطوة 2.3
عوّض في المعادلة التفاضلية.
خطوة 2.4
احذِف الأقواس.
خطوة 2.5
أخرِج عامل .
خطوة 2.5.1
أخرِج العامل من .
خطوة 2.5.2
أخرِج العامل من .
خطوة 2.5.3
أخرِج العامل من .
خطوة 2.5.4
أخرِج العامل من .
خطوة 2.5.5
أخرِج العامل من .
خطوة 2.6
بما أن الأسية لا يمكن أن تساوي صفرًا، إذن اقسم كلا الطرفين على .
خطوة 3
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.4
بسّط.
خطوة 3.4.1
بسّط بَسْط الكسر.
خطوة 3.4.1.1
ارفع إلى القوة .
خطوة 3.4.1.2
اضرب في .
خطوة 3.4.1.3
طبّق خاصية التوزيع.
خطوة 3.4.1.4
اضرب في .
خطوة 3.4.1.5
اضرب في .
خطوة 3.4.1.6
اطرح من .
خطوة 3.4.2
اضرب في .
خطوة 3.5
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.5.1
بسّط بَسْط الكسر.
خطوة 3.5.1.1
ارفع إلى القوة .
خطوة 3.5.1.2
اضرب في .
خطوة 3.5.1.3
طبّق خاصية التوزيع.
خطوة 3.5.1.4
اضرب في .
خطوة 3.5.1.5
اضرب في .
خطوة 3.5.1.6
اطرح من .
خطوة 3.5.2
اضرب في .
خطوة 3.5.3
غيّر إلى .
خطوة 3.6
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.6.1
بسّط بَسْط الكسر.
خطوة 3.6.1.1
ارفع إلى القوة .
خطوة 3.6.1.2
اضرب في .
خطوة 3.6.1.3
طبّق خاصية التوزيع.
خطوة 3.6.1.4
اضرب في .
خطوة 3.6.1.5
اضرب في .
خطوة 3.6.1.6
اطرح من .
خطوة 3.6.2
اضرب في .
خطوة 3.6.3
غيّر إلى .
خطوة 3.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
باستخدام القيمتين اللتين تم إيجادهما لـ ، يمكن الوصول إلى حلين.
خطوة 5
وفقًا لمبدأ التراكب، الحل العام هو مجموعة خطية من الحلين لمعادلة تفاضلية خطية متجانسة من الدرجة الثانية.
خطوة 6
خطوة 6.1
اجمع و.
خطوة 6.2
اجمع و.