إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.5
أعِد ترتيب الحدود.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
اطرح من .
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
خطوة 4.3.2.1
طبّق خاصية التوزيع.
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
اضرب في .
خطوة 4.3.2.4
أضف و.
خطوة 4.3.2.5
أخرِج العامل من .
خطوة 4.3.2.5.1
أخرِج العامل من .
خطوة 4.3.2.5.2
أخرِج العامل من .
خطوة 4.3.2.5.3
أخرِج العامل من .
خطوة 4.3.3
أخرِج العامل من .
خطوة 4.3.3.1
أخرِج العامل من .
خطوة 4.3.3.2
أخرِج العامل من .
خطوة 4.3.3.3
أخرِج العامل من .
خطوة 4.3.4
احذِف العامل المشترك لـ و.
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
ألغِ العوامل المشتركة.
خطوة 4.3.4.2.1
أخرِج العامل من .
خطوة 4.3.4.2.2
ألغِ العامل المشترك.
خطوة 4.3.4.2.3
أعِد كتابة العبارة.
خطوة 4.3.5
احذِف العامل المشترك لـ و.
خطوة 4.3.5.1
أخرِج العامل من .
خطوة 4.3.5.2
أخرِج العامل من .
خطوة 4.3.5.3
أخرِج العامل من .
خطوة 4.3.5.4
أعِد كتابة بالصيغة .
خطوة 4.3.5.5
أعِد ترتيب الحدود.
خطوة 4.3.5.6
ألغِ العامل المشترك.
خطوة 4.3.5.7
أعِد كتابة العبارة.
خطوة 4.3.6
اضرب في .
خطوة 4.3.7
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.3
اضرب في .
خطوة 5.4
تكامل بالنسبة إلى هو .
خطوة 5.5
بسّط.
خطوة 5.6
بسّط كل حد.
خطوة 5.6.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.6.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.6.3
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 5.6.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في .
خطوة 6.3
أخرِج العامل من .
خطوة 6.3.1
أخرِج العامل من .
خطوة 6.3.2
أخرِج العامل من .
خطوة 6.3.3
أخرِج العامل من .
خطوة 6.4
ألغِ العامل المشترك لـ .
خطوة 6.4.1
ألغِ العامل المشترك.
خطوة 6.4.2
اقسِم على .
خطوة 6.5
اضرب في .
خطوة 6.6
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 8.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.4
طبّق قاعدة الثابت.
خطوة 8.5
اجمع و.
خطوة 8.6
بسّط.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
أوجِد المشتقة.
خطوة 11.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.3
اضرب في .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
خطوة 11.5.1
اطرح من .
خطوة 11.5.2
أعِد ترتيب الحدود.
خطوة 12
خطوة 12.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 12.1.1
أضف إلى كلا المتعادلين.
خطوة 12.1.2
بسّط كل حد.
خطوة 12.1.2.1
قسّم الكسر إلى كسرين.
خطوة 12.1.2.2
ألغِ العامل المشترك لـ .
خطوة 12.1.2.2.1
ألغِ العامل المشترك.
خطوة 12.1.2.2.2
اقسِم على .
خطوة 12.1.3
جمّع الحدود المتعاكسة في .
خطوة 12.1.3.1
أضف و.
خطوة 12.1.3.2
أضف و.
خطوة 13
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.4
انقُل خارج القاسم برفعها إلى القوة .
خطوة 13.5
اضرب الأُسس في .
خطوة 13.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 13.5.2
اضرب في .
خطوة 13.6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 13.7
بسّط الإجابة.
خطوة 13.7.1
أعِد كتابة بالصيغة .
خطوة 13.7.2
بسّط.
خطوة 13.7.2.1
اضرب في .
خطوة 13.7.2.2
اجمع و.
خطوة 13.7.2.3
انقُل السالب أمام الكسر.
خطوة 14
عوّض عن في .