إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4
اضرب في .
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
أضف و.
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.1.1
أخرِج العامل من .
خطوة 4.3.2.1.2
أخرِج العامل من .
خطوة 4.3.2.1.3
أخرِج العامل من .
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
اطرح من .
خطوة 4.3.3
ألغِ العامل المشترك لـ .
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
عوّض بقيمة التي تساوي .
خطوة 4.3.4.1
ألغِ العامل المشترك.
خطوة 4.3.4.2
أعِد كتابة العبارة.
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
تكامل بالنسبة إلى هو .
خطوة 5.2
بسّط الإجابة.
خطوة 5.2.1
بسّط.
خطوة 5.2.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في بجمع الأُسس.
خطوة 6.2.1
انقُل .
خطوة 6.2.2
اضرب في .
خطوة 6.3
اضرب في .
خطوة 6.4
طبّق خاصية التوزيع.
خطوة 6.5
اضرب في بجمع الأُسس.
خطوة 6.5.1
اضرب في .
خطوة 6.5.1.1
ارفع إلى القوة .
خطوة 6.5.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6.5.2
أضف و.
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.3
بسّط الإجابة.
خطوة 8.3.1
أعِد كتابة بالصيغة .
خطوة 8.3.2
بسّط.
خطوة 8.3.2.1
اجمع و.
خطوة 8.3.2.2
اجمع و.
خطوة 8.3.2.3
انقُل إلى يسار .
خطوة 8.3.2.4
اضرب في .
خطوة 8.3.2.5
احذِف العامل المشترك لـ و.
خطوة 8.3.2.5.1
أخرِج العامل من .
خطوة 8.3.2.5.2
ألغِ العوامل المشتركة.
خطوة 8.3.2.5.2.1
أخرِج العامل من .
خطوة 8.3.2.5.2.2
ألغِ العامل المشترك.
خطوة 8.3.2.5.2.3
أعِد كتابة العبارة.
خطوة 8.3.2.6
اجمع و.
خطوة 8.3.3
أعِد ترتيب الحدود.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
خطوة 11.3.1
اجمع و.
خطوة 11.3.2
اجمع و.
خطوة 11.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.5
اجمع و.
خطوة 11.3.6
اجمع و.
خطوة 11.3.7
ألغِ العامل المشترك لـ .
خطوة 11.3.7.1
ألغِ العامل المشترك.
خطوة 11.3.7.2
اقسِم على .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
أعِد ترتيب الحدود.
خطوة 12
خطوة 12.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 12.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.2
جمّع الحدود المتعاكسة في .
خطوة 12.1.2.1
اطرح من .
خطوة 12.1.2.2
أضف و.
خطوة 13
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 14
عوّض عن في .
خطوة 15
خطوة 15.1
اجمع و.
خطوة 15.2
اجمع و.
خطوة 15.3
اجمع و.