إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2
ألغِ العامل المشترك.
خطوة 3.2.3
أعِد كتابة العبارة.
خطوة 3.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4
ألغِ العامل المشترك لـ .
خطوة 3.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
ألغِ العامل المشترك.
خطوة 3.4.4
أعِد كتابة العبارة.
خطوة 3.5
انقُل السالب أمام الكسر.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.2
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 4.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.2.5
طبّق قاعدة الثابت.
خطوة 4.2.6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 4.2.6.1
افترض أن . أوجِد .
خطوة 4.2.6.1.1
أوجِد مشتقة .
خطوة 4.2.6.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.6.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.6.1.4
اضرب في .
خطوة 4.2.6.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.2.7
اجمع و.
خطوة 4.2.8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.9
تكامل بالنسبة إلى هو .
خطوة 4.2.10
بسّط.
خطوة 4.2.11
استبدِل كافة حالات حدوث بـ .
خطوة 4.2.12
بسّط.
خطوة 4.2.12.1
اجمع و.
خطوة 4.2.12.2
طبّق خاصية التوزيع.
خطوة 4.2.12.3
اجمع و.
خطوة 4.2.12.4
اضرب .
خطوة 4.2.12.4.1
اضرب في .
خطوة 4.2.12.4.2
اضرب في .
خطوة 4.2.13
أعِد ترتيب الحدود.
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 4.3.2.1
افترض أن . أوجِد .
خطوة 4.3.2.1.1
أوجِد مشتقة .
خطوة 4.3.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.3
احسِب قيمة .
خطوة 4.3.2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.2.1.3.3
اضرب في .
خطوة 4.3.2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.3.2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.4.2
أضف و.
خطوة 4.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.3
بسّط.
خطوة 4.3.3.1
اضرب في .
خطوة 4.3.3.2
انقُل إلى يسار .
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.5
تكامل بالنسبة إلى هو .
خطوة 4.3.6
بسّط.
خطوة 4.3.7
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .