حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(3x^2)/(y(1-x^3))
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد تجميع العوامل.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
أعِد كتابة بالصيغة .
خطوة 1.3.1.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 1.3.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.3.1.3.2
اضرب في .
خطوة 1.3.2
اجمع.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
أخرِج العامل من .
خطوة 1.3.3.2
ألغِ العامل المشترك.
خطوة 1.3.3.3
أعِد كتابة العبارة.
خطوة 1.3.4
اضرب في .
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.2.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.3
أضف و.
خطوة 2.3.2.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.8
أضف و.
خطوة 2.3.2.1.3.9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.1.3.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.11
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.3.11.1
اضرب في .
خطوة 2.3.2.1.3.11.2
انقُل إلى يسار .
خطوة 2.3.2.1.3.11.3
أعِد كتابة بالصيغة .
خطوة 2.3.2.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.4.1
طبّق خاصية التوزيع.
خطوة 2.3.2.1.4.2
طبّق خاصية التوزيع.
خطوة 2.3.2.1.4.3
طبّق خاصية التوزيع.
خطوة 2.3.2.1.4.4
طبّق خاصية التوزيع.
خطوة 2.3.2.1.4.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.4.5.1
اضرب في .
خطوة 2.3.2.1.4.5.2
اضرب في .
خطوة 2.3.2.1.4.5.3
اضرب في .
خطوة 2.3.2.1.4.5.4
اضرب في .
خطوة 2.3.2.1.4.5.5
ارفع إلى القوة .
خطوة 2.3.2.1.4.5.6
ارفع إلى القوة .
خطوة 2.3.2.1.4.5.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.2.1.4.5.8
أضف و.
خطوة 2.3.2.1.4.5.9
أضف و.
خطوة 2.3.2.1.4.5.10
اضرب في .
خطوة 2.3.2.1.4.5.11
اطرح من .
خطوة 2.3.2.1.4.5.12
أضف و.
خطوة 2.3.2.1.4.5.13
اطرح من .
خطوة 2.3.2.1.4.5.14
أضف و.
خطوة 2.3.2.1.4.5.15
اطرح من .
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
انقُل السالب أمام الكسر.
خطوة 2.3.3.2
اضرب في .
خطوة 2.3.3.3
انقُل إلى يسار .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
اضرب في .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
اجمع و.
خطوة 2.3.7.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.1
أخرِج العامل من .
خطوة 2.3.7.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.2.1
أخرِج العامل من .
خطوة 2.3.7.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.7.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.7.2.2.4
اقسِم على .
خطوة 2.3.8
تكامل بالنسبة إلى هو .
خطوة 2.3.9
بسّط.
خطوة 2.3.10
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.1
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
خطوة 3.2.2.1.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.2.1
اضرب في .
خطوة 3.2.2.1.1.2.2
اضرب في .
خطوة 3.2.2.1.1.2.3
اضرب في .
خطوة 3.2.2.1.1.2.4
اضرب في .
خطوة 3.2.2.1.1.2.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.2.5.1
انقُل .
خطوة 3.2.2.1.1.2.5.2
اضرب في .
خطوة 3.2.2.1.1.2.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.2.6.1
انقُل .
خطوة 3.2.2.1.1.2.6.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.2.6.2.1
ارفع إلى القوة .
خطوة 3.2.2.1.1.2.6.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.2.1.1.2.6.3
أضف و.
خطوة 3.2.2.1.1.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1.3.1
اطرح من .
خطوة 3.2.2.1.1.3.2
أضف و.
خطوة 3.2.2.1.1.3.3
اطرح من .
خطوة 3.2.2.1.1.3.4
أضف و.
خطوة 3.2.2.1.2
بسّط بالضرب.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.2.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2.2
اضرب في .
خطوة 3.3
بسّط بنقل داخل اللوغاريتم.
خطوة 3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.5
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 3.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.