حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=6 الجذر التربيعي لـ y , y(1)=16
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.2
اضرب في .
خطوة 1.2.3
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
اضرب في .
خطوة 1.2.3.2
ارفع إلى القوة .
خطوة 1.2.3.3
ارفع إلى القوة .
خطوة 1.2.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.3.5
أضف و.
خطوة 1.2.3.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.6.1
استخدِم لكتابة في صورة .
خطوة 1.2.3.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.3.6.3
اجمع و.
خطوة 1.2.3.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.6.4.1
ألغِ العامل المشترك.
خطوة 1.2.3.6.4.2
أعِد كتابة العبارة.
خطوة 1.2.3.6.5
بسّط.
خطوة 1.2.4
اجمع و.
خطوة 1.2.5
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
اجمع و.
خطوة 1.2.5.2
ارفع إلى القوة .
خطوة 1.2.5.3
ارفع إلى القوة .
خطوة 1.2.5.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.5.5
أضف و.
خطوة 1.2.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.1
استخدِم لكتابة في صورة .
خطوة 1.2.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.6.3
اجمع و.
خطوة 1.2.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.4.1
ألغِ العامل المشترك.
خطوة 1.2.6.4.2
أعِد كتابة العبارة.
خطوة 1.2.6.5
بسّط.
خطوة 1.2.7
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.1
ألغِ العامل المشترك.
خطوة 1.2.7.2
اقسِم على .
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
استخدِم لكتابة في صورة .
خطوة 2.2.1.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.3.2
اجمع و.
خطوة 2.2.1.3.3
انقُل السالب أمام الكسر.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
طبّق قاعدة الثابت.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اقسِم كل حد في على .
خطوة 3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
ألغِ العامل المشترك.
خطوة 3.1.2.2
اقسِم على .
خطوة 3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1.1
أخرِج العامل من .
خطوة 3.1.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1.2.1
أخرِج العامل من .
خطوة 3.1.3.1.2.2
ألغِ العامل المشترك.
خطوة 3.1.3.1.2.3
أعِد كتابة العبارة.
خطوة 3.1.3.1.2.4
اقسِم على .
خطوة 3.2
ارفع كل متعادل إلى القوة لحذف الأُس الكسري في الطرف الأيسر.
خطوة 3.3
بسّط الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.1.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.3.1.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.3.1.1.2
بسّط.
خطوة 3.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
أعِد كتابة بالصيغة .
خطوة 3.3.2.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.2.1
طبّق خاصية التوزيع.
خطوة 3.3.2.1.2.2
طبّق خاصية التوزيع.
خطوة 3.3.2.1.2.3
طبّق خاصية التوزيع.
خطوة 3.3.2.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2.1.3.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.1.2.1
انقُل .
خطوة 3.3.2.1.3.1.2.2
اضرب في .
خطوة 3.3.2.1.3.1.3
اضرب في .
خطوة 3.3.2.1.3.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.1.4.1
اجمع و.
خطوة 3.3.2.1.3.1.4.2
اجمع و.
خطوة 3.3.2.1.3.1.5
انقُل إلى يسار .
خطوة 3.3.2.1.3.1.6
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2.1.3.1.7
اجمع و.
خطوة 3.3.2.1.3.1.8
اجمع و.
خطوة 3.3.2.1.3.1.9
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.1.9.1
اضرب في .
خطوة 3.3.2.1.3.1.9.2
ارفع إلى القوة .
خطوة 3.3.2.1.3.1.9.3
ارفع إلى القوة .
خطوة 3.3.2.1.3.1.9.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.3.2.1.3.1.9.5
أضف و.
خطوة 3.3.2.1.3.1.9.6
اضرب في .
خطوة 3.3.2.1.3.2
أضف و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.3.2.1
انقُل .
خطوة 3.3.2.1.3.2.2
أضف و.
خطوة 3.3.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.4.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.4.2
أعِد كتابة العبارة.
خطوة 3.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
انقُل .
خطوة 3.4.2
أعِد ترتيب و.
خطوة 4
بسّط ثابت التكامل.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
اضرب في .
خطوة 6.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
أضف و.
خطوة 6.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اطرح من كلا المتعادلين.
خطوة 6.3.2
اطرح من .
خطوة 6.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
اقسِم كل حد في على .
خطوة 6.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1.1
ألغِ العامل المشترك.
خطوة 6.4.2.1.2
اقسِم على .
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .