حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية x^2-(y^3+2)(dy)/(dx)=0
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.1.2
اضرب في .
خطوة 1.1.1.3
طبّق خاصية التوزيع.
خطوة 1.1.2
اطرح من كلا المتعادلين.
خطوة 1.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
أخرِج العامل من .
خطوة 1.1.3.2
أخرِج العامل من .
خطوة 1.1.3.3
أخرِج العامل من .
خطوة 1.1.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
اقسِم كل حد في على .
خطوة 1.1.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.4.2.1.2
اقسِم على .
خطوة 1.1.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.3.1
انقُل السالب أمام الكسر.
خطوة 1.1.4.3.2
أخرِج العامل من .
خطوة 1.1.4.3.3
أعِد كتابة بالصيغة .
خطوة 1.1.4.3.4
أخرِج العامل من .
خطوة 1.1.4.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.3.5.1
أعِد كتابة بالصيغة .
خطوة 1.1.4.3.5.2
انقُل السالب أمام الكسر.
خطوة 1.1.4.3.5.3
اضرب في .
خطوة 1.1.4.3.5.4
اضرب في .
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
ألغِ العامل المشترك.
خطوة 1.3.2
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
طبّق قاعدة الثابت.
خطوة 2.2.4
بسّط.
خطوة 2.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .