إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 2.2.1.1
افترض أن . أوجِد .
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.5
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
تكامل بالنسبة إلى هو .
خطوة 2.3.3
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
بسّط الطرف الأيمن.
خطوة 3.1.1
اجمع و.
خطوة 3.2
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.4
بسّط الحدود.
خطوة 3.4.1
اجمع و.
خطوة 3.4.2
اجمع البسوط على القاسم المشترك.
خطوة 3.5
انقُل إلى يسار .
خطوة 3.6
بسّط الطرف الأيسر.
خطوة 3.6.1
بسّط .
خطوة 3.6.1.1
بسّط بَسْط الكسر.
خطوة 3.6.1.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3.6.1.1.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 3.6.1.2
أعِد كتابة بالصيغة .
خطوة 3.6.1.3
بسّط بنقل داخل اللوغاريتم.
خطوة 3.6.1.4
طبّق قاعدة الضرب على .
خطوة 3.6.1.5
بسّط بَسْط الكسر.
خطوة 3.6.1.5.1
اضرب الأُسس في .
خطوة 3.6.1.5.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.6.1.5.1.2
ألغِ العامل المشترك لـ .
خطوة 3.6.1.5.1.2.1
ألغِ العامل المشترك.
خطوة 3.6.1.5.1.2.2
أعِد كتابة العبارة.
خطوة 3.6.1.5.2
بسّط.
خطوة 3.7
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.8
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.9
أوجِد قيمة .
خطوة 3.9.1
أعِد كتابة المعادلة في صورة .
خطوة 3.9.2
اضرب كلا الطرفين في .
خطوة 3.9.3
بسّط الطرف الأيسر.
خطوة 3.9.3.1
ألغِ العامل المشترك لـ .
خطوة 3.9.3.1.1
ألغِ العامل المشترك.
خطوة 3.9.3.1.2
أعِد كتابة العبارة.
خطوة 3.9.4
أوجِد قيمة .
خطوة 3.9.4.1
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.9.4.2
أضف إلى كلا المتعادلين.
خطوة 4
خطوة 4.1
بسّط ثابت التكامل.
خطوة 4.2
اجمع الثوابت مع الزائد أو الناقص.