حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (1+sin(x)^2)(dy)/(dx)=e^(-2y)sin(2x) , y(0)=1
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
ألغِ العامل المشترك.
خطوة 1.4.2
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 2.2.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.1.2
اضرب في .
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
أوجِد مشتقة .
خطوة 2.2.2.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.2.1.4
اضرب في .
خطوة 2.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.3
اجمع و.
خطوة 2.2.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.5
تكامل بالنسبة إلى هو .
خطوة 2.2.6
بسّط.
خطوة 2.2.7
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.1
أوجِد مشتقة .
خطوة 2.3.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.1.1.3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.1.1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.4.1
أضف و.
خطوة 2.3.1.1.4.2
أعِد ترتيب عوامل .
خطوة 2.3.1.1.4.3
أعِد ترتيب و.
خطوة 2.3.1.1.4.4
أعِد ترتيب و.
خطوة 2.3.1.1.4.5
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
تكامل بالنسبة إلى هو .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
طبّق خاصية التوزيع.
خطوة 3.3
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 3.4
وسّع الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
وسّع بنقل خارج اللوغاريتم.
خطوة 3.4.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 3.4.3
اضرب في .
خطوة 3.5
وسّع بنقل خارج اللوغاريتم.
خطوة 3.6
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
اقسِم كل حد في على .
خطوة 3.6.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1.1
ألغِ العامل المشترك.
خطوة 3.6.2.1.2
اقسِم على .
خطوة 4
بسّط ثابت التكامل.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
اضرب كلا المتعادلين في .
خطوة 6.3
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1.1.1
ألغِ العامل المشترك.
خطوة 6.3.1.1.1.2
أعِد كتابة العبارة.
خطوة 6.3.1.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1.2.1.1
القيمة الدقيقة لـ هي .
خطوة 6.3.1.1.2.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.3.1.1.2.2
أضف و.
خطوة 6.3.1.1.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 6.3.1.1.2.4
اضرب في .
خطوة 6.3.1.1.3
أضف و.
خطوة 6.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
اضرب في .
خطوة 6.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.6
أعِد كتابة المعادلة في صورة .
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .
خطوة 7.2
أعِد كتابة بالصيغة .
خطوة 7.3
بسّط بنقل داخل اللوغاريتم.
خطوة 7.4
بسّط بنقل داخل اللوغاريتم.