حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (4te^(2x))dy=ye^(2x)dx
خطوة 1
اضرب كلا الطرفين في .
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2
اجمع و.
خطوة 2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أخرِج العامل من .
خطوة 2.3.2
أخرِج العامل من .
خطوة 2.3.3
ألغِ العامل المشترك.
خطوة 2.3.4
أعِد كتابة العبارة.
خطوة 2.4
اجمع و.
خطوة 2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أخرِج العامل من .
خطوة 2.5.2
ألغِ العامل المشترك.
خطوة 2.5.3
أعِد كتابة العبارة.
خطوة 3
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن التكامل في كل طرف.
خطوة 3.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 3.2.2
تكامل بالنسبة إلى هو .
خطوة 3.2.3
بسّط.
خطوة 3.3
طبّق قاعدة الثابت.
خطوة 3.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
اقسِم كل حد في على .
خطوة 4.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
ألغِ العامل المشترك.
خطوة 4.1.2.1.2
أعِد كتابة العبارة.
خطوة 4.1.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
ألغِ العامل المشترك.
خطوة 4.1.2.2.2
اقسِم على .
خطوة 4.2
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 4.3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 4.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .