حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(64xy)^(1/3)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
طبّق قاعدة الضرب على .
خطوة 1.1.1.2
طبّق قاعدة الضرب على .
خطوة 1.1.2
أعِد كتابة بالصيغة .
خطوة 1.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
ألغِ العامل المشترك.
خطوة 1.1.4.2
أعِد كتابة العبارة.
خطوة 1.1.5
احسِب قيمة الأُس.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.3.2
اجمع و.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
أخرِج العامل من .
خطوة 1.3.3.2
ألغِ العامل المشترك.
خطوة 1.3.3.3
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.1.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.2
اجمع و.
خطوة 2.2.1.2.3
انقُل السالب أمام الكسر.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.2.1
اجمع و.
خطوة 2.3.3.2.2
اضرب في .
خطوة 2.3.3.2.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.2.3.1
أخرِج العامل من .
خطوة 2.3.3.2.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.2.3.2.1
أخرِج العامل من .
خطوة 2.3.3.2.3.2.2
ألغِ العامل المشترك.
خطوة 2.3.3.2.3.2.3
أعِد كتابة العبارة.
خطوة 2.3.3.2.3.2.4
اقسِم على .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
اجمع.
خطوة 3.2.1.1.3
ألغِ العامل المشترك.
خطوة 3.2.1.1.4
أعِد كتابة العبارة.
خطوة 3.2.1.1.5
ألغِ العامل المشترك.
خطوة 3.2.1.1.6
اقسِم على .
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.2.1
أخرِج العامل من .
خطوة 3.2.2.1.2.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.2.3
أعِد كتابة العبارة.
خطوة 3.2.2.1.3
اجمع و.
خطوة 3.3
ارفع كل متعادل إلى القوة لحذف الأُس الكسري في الطرف الأيسر.
خطوة 3.4
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.4.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.4.1.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1.3.1
ألغِ العامل المشترك.
خطوة 3.4.1.1.3.2
أعِد كتابة العبارة.
خطوة 3.4.1.2
بسّط.
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.