إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أخرِج العامل من .
خطوة 1.3
أعِد ترتيب و.
خطوة 2
خطوة 2.1
عيّن التكامل.
خطوة 2.2
أوجِد تكامل .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط.
خطوة 2.3
احذف ثابت التكامل.
خطوة 2.4
استخدِم قاعدة القوة اللوغاريتمية.
خطوة 2.5
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 2.6
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3
خطوة 3.1
اضرب كل حد في .
خطوة 3.2
بسّط كل حد.
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.3
اجمع و.
خطوة 3.2.4
اضرب .
خطوة 3.2.4.1
اضرب في .
خطوة 3.2.4.2
ارفع إلى القوة .
خطوة 3.2.4.3
ارفع إلى القوة .
خطوة 3.2.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.4.5
أضف و.
خطوة 3.3
بسّط كل حد.
خطوة 3.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2
اجمع و.
خطوة 3.3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.3.1
ألغِ العامل المشترك.
خطوة 3.3.3.2
أعِد كتابة العبارة.
خطوة 3.3.4
اجمع و.
خطوة 4
أعِد كتابة الطرف الأيسر في صورة نتيجة اشتقاق حاصل الضرب.
خطوة 5
عيّن التكامل في كل طرف.
خطوة 6
أوجِد تكامل الطرف الأيسر.
خطوة 7
خطوة 7.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 7.2
طبّق قاعدة الثابت.
خطوة 7.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7.4
تكامل بالنسبة إلى هو .
خطوة 7.5
بسّط.
خطوة 8
خطوة 8.1
اجمع و.
خطوة 8.2
بسّط بنقل داخل اللوغاريتم.
خطوة 8.3
اضرب كلا الطرفين في .
خطوة 8.4
بسّط.
خطوة 8.4.1
بسّط الطرف الأيسر.
خطوة 8.4.1.1
ألغِ العامل المشترك لـ .
خطوة 8.4.1.1.1
ألغِ العامل المشترك.
خطوة 8.4.1.1.2
أعِد كتابة العبارة.
خطوة 8.4.2
بسّط الطرف الأيمن.
خطوة 8.4.2.1
بسّط .
خطوة 8.4.2.1.1
طبّق خاصية التوزيع.
خطوة 8.4.2.1.2
اضرب في بجمع الأُسس.
خطوة 8.4.2.1.2.1
انقُل .
خطوة 8.4.2.1.2.2
اضرب في .
خطوة 8.4.2.1.3
أعِد ترتيب العوامل في .
خطوة 8.4.2.1.4
انقُل .