حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية y(u^2+1)du+(u^3-3u)dy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
ألغِ العامل المشترك.
خطوة 3.1.3
أعِد كتابة العبارة.
خطوة 3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.3
ألغِ العامل المشترك.
خطوة 3.3.4
أعِد كتابة العبارة.
خطوة 3.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
أخرِج العامل من .
خطوة 3.5
انقُل السالب أمام الكسر.
خطوة 3.6
طبّق خاصية التوزيع.
خطوة 3.7
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.7.2
أخرِج العامل من .
خطوة 3.7.3
ألغِ العامل المشترك.
خطوة 3.7.4
أعِد كتابة العبارة.
خطوة 3.8
اجمع و.
خطوة 3.9
اضرب في .
خطوة 3.10
انقُل السالب أمام الكسر.
خطوة 3.11
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.12
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 3.12.1
اضرب في .
خطوة 3.12.2
أعِد ترتيب عوامل .
خطوة 3.13
اجمع البسوط على القاسم المشترك.
خطوة 3.14
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.14.1
انقُل .
خطوة 3.14.2
اضرب في .
خطوة 3.15
أخرِج العامل من .
خطوة 3.16
أعِد كتابة بالصيغة .
خطوة 3.17
أخرِج العامل من .
خطوة 3.18
أعِد كتابة بالصيغة .
خطوة 3.19
انقُل السالب أمام الكسر.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
تكامل بالنسبة إلى هو .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
اكتب الكسر باستخدام التفكيك الكسري الجزئي.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
فكّ الكسر واضرب في القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل من الرتبة الثانية، يلزم وجود من الحدود في بسط الكسر. ودائمًا ما يكون عدد الحدود اللازم في بسط الكسر مساويًا لرتبة العامل في القاسم.
خطوة 4.3.2.1.2
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 4.3.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.3.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.3.2
أعِد كتابة العبارة.
خطوة 4.3.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.4.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.4.2
اقسِم على .
خطوة 4.3.2.1.5
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.5.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.5.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.5.1.2
اقسِم على .
خطوة 4.3.2.1.5.2
طبّق خاصية التوزيع.
خطوة 4.3.2.1.5.3
انقُل إلى يسار .
خطوة 4.3.2.1.5.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.5.4.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.5.4.2
اقسِم على .
خطوة 4.3.2.1.5.5
طبّق خاصية التوزيع.
خطوة 4.3.2.1.5.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.5.6.1
انقُل .
خطوة 4.3.2.1.5.6.2
اضرب في .
خطوة 4.3.2.1.6
انقُل .
خطوة 4.3.2.2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 4.3.2.2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 4.3.2.2.3
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 4.3.2.2.4
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 4.3.2.3
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.1
أعِد كتابة المعادلة في صورة .
خطوة 4.3.2.3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.2.1
أعِد كتابة المعادلة في صورة .
خطوة 4.3.2.3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.2.2.1
اقسِم كل حد في على .
خطوة 4.3.2.3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.3.2.2.2.1.2
اقسِم على .
خطوة 4.3.2.3.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 4.3.2.3.3
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.3.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.3.2.3.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.3.2.1
احذِف الأقواس.
خطوة 4.3.2.3.4
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.3.2.3.4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.3.2.3.4.2.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 4.3.2.3.4.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.3.2.3.4.2.4
أضف و.
خطوة 4.3.2.3.5
أوجِد حل سلسلة المعادلات.
خطوة 4.3.2.3.6
اسرِد جميع الحلول.
خطوة 4.3.2.4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و و.
خطوة 4.3.2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.5.1
احذِف الأقواس.
خطوة 4.3.2.5.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.5.2.1
اجمع و.
خطوة 4.3.2.5.2.2
أضف و.
خطوة 4.3.2.5.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.3.2.5.4
اضرب في .
خطوة 4.3.2.5.5
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.3.2.5.6
اضرب في .
خطوة 4.3.2.5.7
انقُل إلى يسار .
خطوة 4.3.3
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.6
تكامل بالنسبة إلى هو .
خطوة 4.3.7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.8
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.8.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.8.1.1
أوجِد مشتقة .
خطوة 4.3.8.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.8.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.8.1.5
أضف و.
خطوة 4.3.8.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.9.1
اضرب في .
خطوة 4.3.9.2
انقُل إلى يسار .
خطوة 4.3.10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.11.1
اضرب في .
خطوة 4.3.11.2
اضرب في .
خطوة 4.3.11.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.11.3.1
أخرِج العامل من .
خطوة 4.3.11.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.11.3.2.1
أخرِج العامل من .
خطوة 4.3.11.3.2.2
ألغِ العامل المشترك.
خطوة 4.3.11.3.2.3
أعِد كتابة العبارة.
خطوة 4.3.12
تكامل بالنسبة إلى هو .
خطوة 4.3.13
بسّط.
خطوة 4.3.14
استبدِل كافة حالات حدوث بـ .
خطوة 4.3.15
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.15.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.15.1.1
اجمع و.
خطوة 4.3.15.1.2
اجمع و.
خطوة 4.3.15.2
اجمع البسوط على القاسم المشترك.
خطوة 4.3.15.3
أخرِج العامل من .
خطوة 4.3.15.4
أخرِج العامل من .
خطوة 4.3.15.5
أخرِج العامل من .
خطوة 4.3.15.6
أعِد كتابة بالصيغة .
خطوة 4.3.15.7
انقُل السالب أمام الكسر.
خطوة 4.3.15.8
اضرب في .
خطوة 4.3.15.9
اضرب في .
خطوة 4.3.16
أعِد ترتيب الحدود.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.1
طبّق خاصية التوزيع.
خطوة 5.1.1.2
اجمع و.
خطوة 5.1.1.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.3.1
اجمع و.
خطوة 5.1.1.3.2
اجمع و.
خطوة 5.1.1.4
انقُل السالب أمام الكسر.
خطوة 5.2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب كل حد في في .
خطوة 5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
انقُل إلى يسار .
خطوة 5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1.1.1
ألغِ العامل المشترك.
خطوة 5.2.3.1.1.2
أعِد كتابة العبارة.
خطوة 5.2.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 5.2.3.1.2.2
ألغِ العامل المشترك.
خطوة 5.2.3.1.2.3
أعِد كتابة العبارة.
خطوة 5.2.3.1.3
انقُل إلى يسار .
خطوة 5.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.4.1.1.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 5.4.1.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 5.5
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 5.6
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 5.7
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5.8
اجمع و.
خطوة 5.9
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.10
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.11
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.1
أعِد كتابة المعادلة في صورة .
خطوة 5.11.2
اضرب كلا الطرفين في .
خطوة 5.11.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.3.1.1
ألغِ العامل المشترك.
خطوة 5.11.3.1.2
أعِد كتابة العبارة.
خطوة 5.11.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.1.1
اقسِم كل حد في على .
خطوة 5.11.4.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.1.2.1.1
ألغِ العامل المشترك.
خطوة 5.11.4.1.2.1.2
اقسِم على .
خطوة 5.11.4.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.11.4.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.1
أعِد كتابة بالصيغة .
خطوة 5.11.4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.2.1
أعِد كتابة بالصيغة .
خطوة 5.11.4.3.2.2
أخرِج الحدود من تحت الجذر.
خطوة 5.11.4.3.3
اضرب في .
خطوة 5.11.4.3.4
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.4.1
اضرب في .
خطوة 5.11.4.3.4.2
ارفع إلى القوة .
خطوة 5.11.4.3.4.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.11.4.3.4.4
أضف و.
خطوة 5.11.4.3.4.5
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.4.5.1
استخدِم لكتابة في صورة .
خطوة 5.11.4.3.4.5.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.11.4.3.4.5.3
اجمع و.
خطوة 5.11.4.3.4.5.4
اضرب في .
خطوة 5.11.4.3.4.5.5
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.4.5.5.1
أخرِج العامل من .
خطوة 5.11.4.3.4.5.5.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.4.5.5.2.1
أخرِج العامل من .
خطوة 5.11.4.3.4.5.5.2.2
ألغِ العامل المشترك.
خطوة 5.11.4.3.4.5.5.2.3
أعِد كتابة العبارة.
خطوة 5.11.4.3.4.5.5.2.4
اقسِم على .
خطوة 5.11.4.3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.1
أعِد كتابة بالصيغة .
خطوة 5.11.4.3.5.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.11.4.3.5.2.2
اضرب في .
خطوة 5.11.4.3.5.3
استخدِم مبرهنة ذات الحدين.
خطوة 5.11.4.3.5.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.4.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.4.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.11.4.3.5.4.1.2
اضرب في .
خطوة 5.11.4.3.5.4.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.4.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.11.4.3.5.4.2.2
اضرب في .
خطوة 5.11.4.3.5.4.3
اضرب في .
خطوة 5.11.4.3.5.4.4
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.11.4.3.5.4.4.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.11.4.3.5.4.4.2
اضرب في .
خطوة 5.11.4.3.5.4.5
ارفع إلى القوة .
خطوة 5.11.4.3.5.4.6
اضرب في .
خطوة 5.11.4.3.5.4.7
ارفع إلى القوة .
خطوة 5.11.4.3.5.4.8
اضرب في .
خطوة 5.11.4.3.5.4.9
ارفع إلى القوة .
خطوة 5.11.4.3.5.5
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 5.11.4.3.6
أعِد ترتيب العوامل في .
خطوة 5.11.4.4
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 6
بسّط ثابت التكامل.