إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
طبّق قاعدة الثابت.
خطوة 2.2.4
بسّط.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
اضرب .
خطوة 2.3.2
اضرب في .
خطوة 2.3.3
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.6
طبّق قاعدة الثابت.
خطوة 2.3.7
بسّط.
خطوة 2.3.7.1
اجمع و.
خطوة 2.3.7.2
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اجمع و.
خطوة 3.2
اجمع و.
خطوة 3.3
انقُل كل العبارات إلى المتعادل الأيسر.
خطوة 3.3.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2
أضف إلى كلا المتعادلين.
خطوة 3.3.3
اطرح من كلا المتعادلين.
خطوة 3.4
اضرب في القاسم المشترك الأصغر ، ثم بسّط.
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
بسّط.
خطوة 3.4.2.1
ألغِ العامل المشترك لـ .
خطوة 3.4.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.2.1.2
أعِد كتابة العبارة.
خطوة 3.4.2.2
اضرب في .
خطوة 3.4.2.3
ألغِ العامل المشترك لـ .
خطوة 3.4.2.3.1
ألغِ العامل المشترك.
خطوة 3.4.2.3.2
أعِد كتابة العبارة.
خطوة 3.4.2.4
اضرب في .
خطوة 3.4.3
انقُل .
خطوة 3.4.4
انقُل .
خطوة 3.4.5
أعِد ترتيب و.
خطوة 3.5
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.6
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.7
بسّط.
خطوة 3.7.1
بسّط بَسْط الكسر.
خطوة 3.7.1.1
ارفع إلى القوة .
خطوة 3.7.1.2
اضرب في .
خطوة 3.7.1.3
طبّق خاصية التوزيع.
خطوة 3.7.1.4
بسّط.
خطوة 3.7.1.4.1
اضرب في .
خطوة 3.7.1.4.2
اضرب في .
خطوة 3.7.1.5
أخرِج العامل من .
خطوة 3.7.1.5.1
أخرِج العامل من .
خطوة 3.7.1.5.2
أخرِج العامل من .
خطوة 3.7.1.5.3
أخرِج العامل من .
خطوة 3.7.1.5.4
أخرِج العامل من .
خطوة 3.7.1.5.5
أخرِج العامل من .
خطوة 3.7.1.5.6
أخرِج العامل من .
خطوة 3.7.1.5.7
أخرِج العامل من .
خطوة 3.7.1.6
أعِد كتابة بالصيغة .
خطوة 3.7.1.6.1
أعِد كتابة بالصيغة .
خطوة 3.7.1.6.2
أعِد كتابة بالصيغة .
خطوة 3.7.1.7
أخرِج الحدود من تحت الجذر.
خطوة 3.7.1.8
ارفع إلى القوة .
خطوة 3.7.2
اضرب في .
خطوة 3.7.3
بسّط .
خطوة 3.8
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
بسّط ثابت التكامل.