إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.2.1
افترض أن . أوجِد .
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.2.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.2.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.2.1.3
أوجِد المشتقة.
خطوة 2.3.2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.3
اضرب في .
خطوة 2.3.2.1.4
بسّط.
خطوة 2.3.2.1.4.1
أعِد ترتيب عوامل .
خطوة 2.3.2.1.4.2
أعِد ترتيب العوامل في .
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
انقُل السالب أمام الكسر.
خطوة 2.3.4
طبّق قاعدة الثابت.
خطوة 2.3.5
بسّط الإجابة.
خطوة 2.3.5.1
بسّط.
خطوة 2.3.5.2
بسّط.
خطوة 2.3.5.2.1
اجمع و.
خطوة 2.3.5.2.2
اضرب في .
خطوة 2.3.5.2.3
اجمع و.
خطوة 2.3.5.2.4
ألغِ العامل المشترك لـ .
خطوة 2.3.5.2.4.1
ألغِ العامل المشترك.
خطوة 2.3.5.2.4.2
اقسِم على .
خطوة 2.3.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 4
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
بسّط كل حد.
خطوة 4.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2
اضرب في .
خطوة 4.2.3
أي شيء مرفوع إلى هو .
خطوة 4.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.3.1
اطرح من كلا المتعادلين.
خطوة 4.3.2
اطرح من .
خطوة 5
خطوة 5.1
عوّض بقيمة التي تساوي .