حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (x+1)dy+(2y+1-2cos(x))dx=0
خطوة 1
أعِد كتابة المعادلة التفاضلية لتناسب المعادلة التفضيلية التامة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد الكتابة.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أضف و.
خطوة 2.5.2
أضف و.
خطوة 3
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة بالنسبة إلى .
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أضف و.
خطوة 4
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بـ عن وبـ عن .
خطوة 4.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 5
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عوّض بقيمة التي تساوي .
خطوة 5.2
عوّض بقيمة التي تساوي .
خطوة 5.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
عوّض بقيمة التي تساوي .
خطوة 5.3.2
اطرح من .
خطوة 5.4
أوجِد عامل التكامل لـ .
خطوة 6
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
أوجِد مشتقة .
خطوة 6.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.1.5
أضف و.
خطوة 6.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 6.2
تكامل بالنسبة إلى هو .
خطوة 6.3
بسّط.
خطوة 6.4
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 6.5
استبدِل كافة حالات حدوث بـ .
خطوة 7
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب في .
خطوة 7.2
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
خطوة 7.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
اضرب في .
خطوة 7.3.2
اضرب في .
خطوة 7.3.3
اضرب في .
خطوة 7.3.4
اضرب في .
خطوة 7.4
أعِد ترتيب العوامل في .
خطوة 7.5
اضرب في .
خطوة 7.6
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 7.6.1
طبّق خاصية التوزيع.
خطوة 7.6.2
طبّق خاصية التوزيع.
خطوة 7.6.3
طبّق خاصية التوزيع.
خطوة 7.7
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.1.1
اضرب في .
خطوة 7.7.1.2
اضرب في .
خطوة 7.7.1.3
اضرب في .
خطوة 7.7.1.4
اضرب في .
خطوة 7.7.2
أضف و.
خطوة 8
عيّن لتساوي تكامل .
خطوة 9
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
طبّق قاعدة الثابت.
خطوة 10
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 11
عيّن .
خطوة 12
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أوجِد مشتقة بالنسبة إلى .
خطوة 12.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 12.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 12.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 12.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 12.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 12.3.7
اضرب في .
خطوة 12.3.8
أضف و.
خطوة 12.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 12.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 12.5.1
طبّق خاصية التوزيع.
خطوة 12.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 12.5.2.1
انقُل إلى يسار .
خطوة 12.5.2.2
انقُل إلى يسار .
خطوة 12.5.3
أعِد ترتيب الحدود.
خطوة 13
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
اطرح من كلا المتعادلين.
خطوة 13.1.2
اطرح من كلا المتعادلين.
خطوة 13.1.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 13.1.3.1
أعِد ترتيب العوامل في الحدين و.
خطوة 13.1.3.2
اطرح من .
خطوة 13.1.3.3
أضف و.
خطوة 13.1.3.4
اطرح من .
خطوة 13.1.3.5
أضف و.
خطوة 14
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 14.1
أوجِد تكامل كلا طرفي .
خطوة 14.2
احسِب قيمة .
خطوة 14.3
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 14.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 14.5
طبّق قاعدة الثابت.
خطوة 14.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14.7
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 14.8
تكامل بالنسبة إلى هو .
خطوة 14.9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14.10
تكامل بالنسبة إلى هو .
خطوة 14.11
بسّط.
خطوة 14.12
أعِد ترتيب الحدود.
خطوة 15
عوّض عن في .
خطوة 16
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 16.1
طبّق خاصية التوزيع.
خطوة 16.2
اضرب في .
خطوة 16.3
اجمع و.