حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(4y)/(e^x)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
اجمع.
خطوة 1.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
ألغِ العامل المشترك.
خطوة 1.2.2.2
أعِد كتابة العبارة.
خطوة 1.2.3
اضرب في .
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 2.3.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.2.2.1.2
انقُل إلى يسار .
خطوة 2.3.2.2.1.3
أعِد كتابة بالصيغة .
خطوة 2.3.2.2.2
اضرب في .
خطوة 2.3.3
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1.1
أوجِد مشتقة .
خطوة 2.3.3.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.3.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.1.4
اضرب في .
خطوة 2.3.3.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
اضرب في .
خطوة 2.3.6
تكامل بالنسبة إلى هو .
خطوة 2.3.7
بسّط.
خطوة 2.3.8
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 4
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
أعِد ترتيب و.
خطوة 4.3
اجمع الثوابت مع الزائد أو الناقص.