حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية x(dy)/(dx)=(y-1)/(y+1)-y
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
اجمع البسوط على القاسم المشترك.
خطوة 1.1.3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.3.3
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
اجمع و.
خطوة 1.1.3.3.2
اجمع البسوط على القاسم المشترك.
خطوة 1.1.3.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.4.1
طبّق خاصية التوزيع.
خطوة 1.1.3.4.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.4.2.1
انقُل .
خطوة 1.1.3.4.2.2
اضرب في .
خطوة 1.1.3.4.3
اضرب في .
خطوة 1.1.3.4.4
اطرح من .
خطوة 1.1.3.4.5
أضف و.
خطوة 1.1.3.5
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.5.1
أعِد كتابة بالصيغة .
خطوة 1.1.3.5.2
أخرِج العامل من .
خطوة 1.1.3.5.3
أخرِج العامل من .
خطوة 1.1.3.5.4
انقُل السالب أمام الكسر.
خطوة 1.1.3.6
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.1.3.7
اضرب في .
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.4.2
اضرب في .
خطوة 1.4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 1.4.3.2
أخرِج العامل من .
خطوة 1.4.3.3
أخرِج العامل من .
خطوة 1.4.3.4
ألغِ العامل المشترك.
خطوة 1.4.3.5
أعِد كتابة العبارة.
خطوة 1.4.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.4.1
ألغِ العامل المشترك.
خطوة 1.4.4.2
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسّم الكسر إلى كسرين.
خطوة 2.2.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.3
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.1
أوجِد مشتقة .
خطوة 2.2.3.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.1.5
أضف و.
خطوة 2.2.3.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
اضرب في .
خطوة 2.2.4.2
انقُل إلى يسار .
خطوة 2.2.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.6
تكامل بالنسبة إلى هو .
خطوة 2.2.7
أعِد كتابة بالصيغة .
خطوة 2.2.8
تكامل بالنسبة إلى هو .
خطوة 2.2.9
بسّط.
خطوة 2.2.10
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
تكامل بالنسبة إلى هو .
خطوة 2.3.3
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .