إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أعِد تجميع العوامل.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
ألغِ العامل المشترك لـ .
خطوة 1.3.2.1
أخرِج العامل من .
خطوة 1.3.2.2
ألغِ العامل المشترك.
خطوة 1.3.2.3
أعِد كتابة العبارة.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
خطوة 1.3.3.1
ألغِ العامل المشترك.
خطوة 1.3.3.2
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.2.1.1
افترض أن . أوجِد .
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.1.1.3
أوجِد المشتقة.
خطوة 2.2.1.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3.4
بسّط العبارة.
خطوة 2.2.1.1.3.4.1
أضف و.
خطوة 2.2.1.1.3.4.2
اضرب في .
خطوة 2.2.1.1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.3.6
بسّط بجمع الحدود.
خطوة 2.2.1.1.3.6.1
اضرب في .
خطوة 2.2.1.1.3.6.2
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
بسّط.
خطوة 2.2.2.1
اضرب في .
خطوة 2.2.2.2
انقُل إلى يسار .
خطوة 2.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.4
تكامل بالنسبة إلى هو .
خطوة 2.2.5
بسّط.
خطوة 2.2.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
تكامل بالنسبة إلى هو .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .