حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(-20x^3+77y^3)/(77xy^2)
خطوة 1
أعِد كتابة المعادلة التفاضلية في صورة الدالة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
قسّم وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
قسّم الكسر إلى كسرين.
خطوة 1.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
أخرِج العامل من .
خطوة 1.1.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.2.1
أخرِج العامل من .
خطوة 1.1.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.2
انقُل السالب أمام الكسر.
خطوة 1.1.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
ألغِ العامل المشترك.
خطوة 1.1.2.3.2
أعِد كتابة العبارة.
خطوة 1.1.2.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.1
أخرِج العامل من .
خطوة 1.1.2.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.2.1
أخرِج العامل من .
خطوة 1.1.2.4.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.4.2.3
أعِد كتابة العبارة.
خطوة 1.2
أعِد كتابة المعادلة التفاضلية في صورة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج عامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أعِد ترتيب و.
خطوة 1.2.2
أعِد كتابة بالصيغة .
خطوة 1.3
أعِد كتابة المعادلة التفاضلية في صورة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج عامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
أخرِج العامل من .
خطوة 1.3.1.2
أعِد ترتيب و.
خطوة 1.3.2
أعِد كتابة بالصيغة .
خطوة 2
افترض أن . عوّض بـ عن .
خطوة 3
أوجِد قيمة في .
خطوة 4
استخدِم قاعدة الضرب لإيجاد مشتق بالنسبة إلى .
خطوة 5
عوّض بقيمة التي تساوي .
خطوة 6
أوجِد حل المعادلة التفاضلية المُعوض عنها.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1.1.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6.1.1.1.1.2
اطرح من .
خطوة 6.1.1.1.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.1.1.1.3
اجمع.
خطوة 6.1.1.1.4
اضرب في .
خطوة 6.1.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.2.1
اطرح من كلا المتعادلين.
خطوة 6.1.1.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.2.2.1
اطرح من .
خطوة 6.1.1.2.2.2
أضف و.
خطوة 6.1.1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.1
اقسِم كل حد في على .
خطوة 6.1.1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.1.2
اقسِم على .
خطوة 6.1.1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.1.1.3.3.2
اضرب في .
خطوة 6.1.1.3.3.3
انقُل إلى يسار .
خطوة 6.1.2
أعِد تجميع العوامل.
خطوة 6.1.3
اضرب كلا الطرفين في .
خطوة 6.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.1.4.2
اجمع.
خطوة 6.1.4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.3.1
أخرِج العامل من .
خطوة 6.1.4.3.2
أخرِج العامل من .
خطوة 6.1.4.3.3
ألغِ العامل المشترك.
خطوة 6.1.4.3.4
أعِد كتابة العبارة.
خطوة 6.1.4.4
اضرب في .
خطوة 6.1.5
أعِد كتابة المعادلة.
خطوة 6.2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
عيّن التكامل في كل طرف.
خطوة 6.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6.2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.3.3
تكامل بالنسبة إلى هو .
خطوة 6.2.3.4
بسّط.
خطوة 6.2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اضرب كلا المتعادلين في .
خطوة 6.3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.1
اجمع و.
خطوة 6.3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1.1
اجمع و.
خطوة 6.3.2.2.1.1.2
انقُل إلى يسار .
خطوة 6.3.2.2.1.2
طبّق خاصية التوزيع.
خطوة 6.3.2.2.1.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.3.1
اضرب في .
خطوة 6.3.2.2.1.3.2
اجمع و.
خطوة 6.3.2.2.1.3.3
اضرب في .
خطوة 6.3.2.2.1.4
انقُل السالب أمام الكسر.
خطوة 6.3.3
بسّط بنقل داخل اللوغاريتم.
خطوة 6.3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.3.5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.1
أعِد كتابة بالصيغة .
خطوة 6.3.5.2
بسّط بنقل داخل اللوغاريتم.
خطوة 6.3.5.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.5.3.2
اجمع و.
خطوة 6.4
بسّط ثابت التكامل.
خطوة 7
عوّض بقيمة التي تساوي .
خطوة 8
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اضرب كلا الطرفين في .
خطوة 8.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ألغِ العامل المشترك.
خطوة 8.2.1.2
أعِد كتابة العبارة.