إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على وبسّط.
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
أعِد كتابة العبارة.
خطوة 1.1.2.2
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
خطوة 1.1.3.1
ألغِ العامل المشترك لـ .
خطوة 1.1.3.1.1
ألغِ العامل المشترك.
خطوة 1.1.3.1.2
أعِد كتابة العبارة.
خطوة 1.2
حلّل إلى عوامل.
خطوة 1.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.2
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.2.2.1
اضرب في .
خطوة 1.2.2.2
أعِد ترتيب عوامل .
خطوة 1.2.3
اجمع البسوط على القاسم المشترك.
خطوة 1.3
أعِد تجميع العوامل.
خطوة 1.4
اضرب كلا الطرفين في .
خطوة 1.5
بسّط.
خطوة 1.5.1
اضرب في .
خطوة 1.5.2
ألغِ العامل المشترك لـ .
خطوة 1.5.2.1
أخرِج العامل من .
خطوة 1.5.2.2
ألغِ العامل المشترك.
خطوة 1.5.2.3
أعِد كتابة العبارة.
خطوة 1.6
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
قسّم الكسر إلى عدة كسور.
خطوة 2.3.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.3
ألغِ العامل المشترك لـ .
خطوة 2.3.3.1
ألغِ العامل المشترك.
خطوة 2.3.3.2
أعِد كتابة العبارة.
خطوة 2.3.4
طبّق قاعدة الثابت.
خطوة 2.3.5
تكامل بالنسبة إلى هو .
خطوة 2.3.6
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
طبّق خاصية التوزيع.
خطوة 3.3
بسّط بنقل داخل اللوغاريتم.
خطوة 3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4
بسّط ثابت التكامل.