حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(y(x+1))/(2x)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد تجميع العوامل.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
أخرِج العامل من .
خطوة 1.3.2.2
ألغِ العامل المشترك.
خطوة 1.3.2.3
أعِد كتابة العبارة.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
ألغِ العامل المشترك.
خطوة 1.3.3.2
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم الكسر إلى عدة كسور.
خطوة 2.3.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
ألغِ العامل المشترك.
خطوة 2.3.3.2
أعِد كتابة العبارة.
خطوة 2.3.4
طبّق قاعدة الثابت.
خطوة 2.3.5
تكامل بالنسبة إلى هو .
خطوة 2.3.6
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3.2.1.1.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 3.2.1.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 3.5.2
اضرب كلا الطرفين في .
خطوة 3.5.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.3.1.1
ألغِ العامل المشترك.
خطوة 3.5.3.1.2
أعِد كتابة العبارة.
خطوة 3.5.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.4.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.5.4.2
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.4.2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.4.2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.4.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
أعِد ترتيب و.
خطوة 4.3
أعِد كتابة بالصيغة .
خطوة 4.4
أعِد ترتيب و.