حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(2x-1)/(y^2)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.4
طبّق قاعدة الثابت.
خطوة 2.3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1
اجمع و.
خطوة 2.3.5.2
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2
اضرب في .
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
أخرِج العامل من .
خطوة 3.4.4
أخرِج العامل من .