حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(cos(x))/(3y-y^2)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.3
أخرِج العامل من .
خطوة 1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
أخرِج العامل من .
خطوة 1.2.3.2
ألغِ العامل المشترك.
خطوة 1.2.3.3
أعِد كتابة العبارة.
خطوة 1.2.4
اجمع و.
خطوة 1.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
أخرِج العامل من .
خطوة 1.2.5.2
ألغِ العامل المشترك.
خطوة 1.2.5.3
أعِد كتابة العبارة.
خطوة 1.2.6
اجمع و.
خطوة 1.2.7
اجمع البسوط على القاسم المشترك.
خطوة 1.2.8
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.8.1
أخرِج العامل من .
خطوة 1.2.8.2
أخرِج العامل من .
خطوة 1.2.8.3
أخرِج العامل من .
خطوة 1.2.9
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.9.1
ألغِ العامل المشترك.
خطوة 1.2.9.2
اقسِم على .
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.1
بسّط.
خطوة 2.2.6.2
اجمع و.
خطوة 2.3
تكامل بالنسبة إلى هو .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .