إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أعِد الكتابة.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
احسِب قيمة .
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
اضرب في .
خطوة 2.5
أعِد ترتيب الحدود.
خطوة 3
خطوة 3.1
أوجِد مشتقة بالنسبة إلى .
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
اضرب في .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4.2
أضف و.
خطوة 4
خطوة 4.1
عوّض بـ عن وبـ عن .
خطوة 4.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 5
عيّن لتساوي تكامل .
خطوة 6
خطوة 6.1
طبّق قاعدة الثابت.
خطوة 7
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 8
عيّن .
خطوة 9
خطوة 9.1
أوجِد مشتقة بالنسبة إلى .
خطوة 9.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9.3
احسِب قيمة .
خطوة 9.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 9.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9.3.3
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 9.3.4
مشتق بالنسبة إلى يساوي .
خطوة 9.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 9.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 9.3.7
اضرب في .
خطوة 9.3.8
أضف و.
خطوة 9.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 9.5
بسّط.
خطوة 9.5.1
طبّق خاصية التوزيع.
خطوة 9.5.2
أعِد ترتيب الحدود.
خطوة 10
خطوة 10.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 10.1.1
اطرح من كلا المتعادلين.
خطوة 10.1.2
اطرح من كلا المتعادلين.
خطوة 10.1.3
جمّع الحدود المتعاكسة في .
خطوة 10.1.3.1
اطرح من .
خطوة 10.1.3.2
أضف و.
خطوة 10.1.3.3
اطرح من .
خطوة 11
خطوة 11.1
أوجِد تكامل كلا طرفي .
خطوة 11.2
احسِب قيمة .
خطوة 11.3
تكامل بالنسبة إلى هو .
خطوة 11.4
أضف و.
خطوة 12
عوّض عن في .
خطوة 13
خطوة 13.1
بسّط كل حد.
خطوة 13.1.1
طبّق خاصية التوزيع.
خطوة 13.1.2
اضرب في .
خطوة 13.2
أعِد ترتيب العوامل في .