حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية ydx-xdy=0
خطوة 1
عوّض بقيمة التي تساوي .
خطوة 2
اطرح من كلا المتعادلين.
خطوة 3
اضرب كلا الطرفين في .
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.2
أخرِج العامل من .
خطوة 4.2.3
ألغِ العامل المشترك.
خطوة 4.2.4
أعِد كتابة العبارة.
خطوة 4.3
انقُل السالب أمام الكسر.
خطوة 4.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.5.2
أخرِج العامل من .
خطوة 4.5.3
ألغِ العامل المشترك.
خطوة 4.5.4
أعِد كتابة العبارة.
خطوة 4.6
انقُل السالب أمام الكسر.
خطوة 5
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن التكامل في كل طرف.
خطوة 5.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2.2
تكامل بالنسبة إلى هو .
خطوة 5.2.3
بسّط.
خطوة 5.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.3.2
تكامل بالنسبة إلى هو .
خطوة 5.3.3
بسّط.
خطوة 5.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 6.2
اطرح من كلا المتعادلين.
خطوة 6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.3.2.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 6.3.3.1.2
أعِد كتابة بالصيغة .
خطوة 6.3.3.1.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.3.3.1.4
اقسِم على .
خطوة 6.4
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 6.5
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 6.6
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.7
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.8
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.8.1
أعِد كتابة المعادلة في صورة .
خطوة 6.8.2
اضرب كلا الطرفين في .
خطوة 6.8.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.8.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.8.3.1.1
ألغِ العامل المشترك.
خطوة 6.8.3.1.2
أعِد كتابة العبارة.
خطوة 6.8.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.8.4.1
أعِد ترتيب العوامل في .
خطوة 6.8.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 7
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
بسّط ثابت التكامل.
خطوة 7.2
اجمع الثوابت مع الزائد أو الناقص.