إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
اطرح من .
خطوة 4.3.3
أخرِج العامل من .
خطوة 4.3.3.1
أخرِج العامل من .
خطوة 4.3.3.2
أخرِج العامل من .
خطوة 4.3.3.3
أخرِج العامل من .
خطوة 4.3.4
ألغِ العامل المشترك لـ .
خطوة 4.3.4.1
ألغِ العامل المشترك.
خطوة 4.3.4.2
أعِد كتابة العبارة.
خطوة 4.3.5
انقُل السالب أمام الكسر.
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 5.2.1
افترض أن . أوجِد .
خطوة 5.2.1.1
أوجِد مشتقة .
خطوة 5.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.2.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.2.1.5
أضف و.
خطوة 5.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 5.3
تكامل بالنسبة إلى هو .
خطوة 5.4
بسّط.
خطوة 5.5
استبدِل كافة حالات حدوث بـ .
خطوة 5.6
بسّط كل حد.
خطوة 5.6.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.6.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.6.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
اجمع و.
خطوة 6.3
اضرب في .
خطوة 6.4
اضرب في .
خطوة 6.5
أخرِج العامل من .
خطوة 6.5.1
أخرِج العامل من .
خطوة 6.5.2
أخرِج العامل من .
خطوة 6.5.3
أخرِج العامل من .
خطوة 6.6
ألغِ العامل المشترك لـ .
خطوة 6.6.1
ألغِ العامل المشترك.
خطوة 6.6.2
اقسِم على .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
أضف و.
خطوة 12
خطوة 12.1
أوجِد تكامل كلا طرفي .
خطوة 12.2
احسِب قيمة .
خطوة 12.3
اقسِم على .
خطوة 12.3.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | + | + |
خطوة 12.3.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | + |
خطوة 12.3.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | + | |||||||
+ | - |
خطوة 12.3.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | + | |||||||
- | + |
خطوة 12.3.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | + | |||||||
- | + | ||||||||
+ |
خطوة 12.3.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | + | |||||||
- | + | ||||||||
+ | + |
خطوة 12.3.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||
- | + | + | |||||||
- | + | ||||||||
+ | + |
خطوة 12.3.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||
- | + | + | |||||||
- | + | ||||||||
+ | + | ||||||||
+ | - |
خطوة 12.3.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||
- | + | + | |||||||
- | + | ||||||||
+ | + | ||||||||
- | + |
خطوة 12.3.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||
- | + | + | |||||||
- | + | ||||||||
+ | + | ||||||||
- | + | ||||||||
+ |
خطوة 12.3.11
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 12.4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 12.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 12.6
طبّق قاعدة الثابت.
خطوة 12.7
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 12.7.1
افترض أن . أوجِد .
خطوة 12.7.1.1
أوجِد مشتقة .
خطوة 12.7.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 12.7.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12.7.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 12.7.1.5
أضف و.
خطوة 12.7.2
أعِد كتابة المسألة باستخدام و.
خطوة 12.8
تكامل بالنسبة إلى هو .
خطوة 12.9
بسّط.
خطوة 12.10
استبدِل كافة حالات حدوث بـ .
خطوة 13
عوّض عن في .
خطوة 14
خطوة 14.1
بسّط كل حد.
خطوة 14.1.1
اجمع و.
خطوة 14.1.2
اجمع و.
خطوة 14.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 14.3
اجمع و.
خطوة 14.4
اجمع البسوط على القاسم المشترك.
خطوة 14.5
بسّط بَسْط الكسر.
خطوة 14.5.1
اضرب .
خطوة 14.5.1.1
أعِد ترتيب و.
خطوة 14.5.1.2
بسّط بنقل داخل اللوغاريتم.
خطوة 14.5.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.