إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على وبسّط.
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
خطوة 1.1.3.1
بسّط القاسم.
خطوة 1.1.3.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.3.1.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
ألغِ العامل المشترك لـ .
خطوة 1.4.1
أخرِج العامل من .
خطوة 1.4.2
ألغِ العامل المشترك.
خطوة 1.4.3
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.2.1
افترض أن . أوجِد .
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.2.1.3
أوجِد المشتقة.
خطوة 2.3.2.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.4
بسّط العبارة.
خطوة 2.3.2.1.3.4.1
أضف و.
خطوة 2.3.2.1.3.4.2
اضرب في .
خطوة 2.3.2.1.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3.8
بسّط بجمع الحدود.
خطوة 2.3.2.1.3.8.1
أضف و.
خطوة 2.3.2.1.3.8.2
اضرب في .
خطوة 2.3.2.1.3.8.3
أضف و.
خطوة 2.3.2.1.3.8.4
بسّط بطرح الأعداد.
خطوة 2.3.2.1.3.8.4.1
اطرح من .
خطوة 2.3.2.1.3.8.4.2
أضف و.
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
بسّط.
خطوة 2.3.3.1
اضرب في .
خطوة 2.3.3.2
انقُل إلى يسار .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
بسّط.
خطوة 2.3.5.1
اجمع و.
خطوة 2.3.5.2
ألغِ العامل المشترك لـ .
خطوة 2.3.5.2.1
ألغِ العامل المشترك.
خطوة 2.3.5.2.2
أعِد كتابة العبارة.
خطوة 2.3.5.3
اضرب في .
خطوة 2.3.6
تكامل بالنسبة إلى هو .
خطوة 2.3.7
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.5
أوجِد قيمة .
خطوة 3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 3.5.2
اضرب كلا الطرفين في .
خطوة 3.5.3
بسّط.
خطوة 3.5.3.1
بسّط الطرف الأيسر.
خطوة 3.5.3.1.1
ألغِ العامل المشترك لـ .
خطوة 3.5.3.1.1.1
ألغِ العامل المشترك.
خطوة 3.5.3.1.1.2
أعِد كتابة العبارة.
خطوة 3.5.3.2
بسّط الطرف الأيمن.
خطوة 3.5.3.2.1
بسّط .
خطوة 3.5.3.2.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.5.3.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.5.3.2.1.1.2
طبّق خاصية التوزيع.
خطوة 3.5.3.2.1.1.3
طبّق خاصية التوزيع.
خطوة 3.5.3.2.1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 3.5.3.2.1.2.1
بسّط كل حد.
خطوة 3.5.3.2.1.2.1.1
اضرب في .
خطوة 3.5.3.2.1.2.1.2
انقُل إلى يسار .
خطوة 3.5.3.2.1.2.1.3
أعِد كتابة بالصيغة .
خطوة 3.5.3.2.1.2.1.4
اضرب في .
خطوة 3.5.3.2.1.2.1.5
اضرب في .
خطوة 3.5.3.2.1.2.2
أضف و.
خطوة 3.5.3.2.1.2.3
أضف و.
خطوة 3.5.4
أوجِد قيمة .
خطوة 3.5.4.1
أعِد ترتيب العوامل في .
خطوة 3.5.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 4
خطوة 4.1
بسّط ثابت التكامل.
خطوة 4.2
اجمع الثوابت مع الزائد أو الناقص.