إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2
اجمع و.
خطوة 3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.1
أخرِج العامل من .
خطوة 3.3.2
ألغِ العامل المشترك.
خطوة 3.3.3
أعِد كتابة العبارة.
خطوة 3.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.5
ألغِ العامل المشترك لـ .
خطوة 3.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.5.2
أخرِج العامل من .
خطوة 3.5.3
ألغِ العامل المشترك.
خطوة 3.5.4
أعِد كتابة العبارة.
خطوة 3.6
انقُل السالب أمام الكسر.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.2
تكامل بالنسبة إلى هو .
خطوة 4.2.3
بسّط.
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
تكامل بالنسبة إلى هو .
خطوة 4.3.3
بسّط.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
خطوة 5.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 5.2
بسّط الطرف الأيسر.
خطوة 5.2.1
بسّط .
خطوة 5.2.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.2.1.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 5.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.5
أوجِد قيمة .
خطوة 5.5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.5.2
اقسِم كل حد في على وبسّط.
خطوة 5.5.2.1
اقسِم كل حد في على .
خطوة 5.5.2.2
بسّط الطرف الأيسر.
خطوة 5.5.2.2.1
ألغِ العامل المشترك لـ .
خطوة 5.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.2.2.1.2
اقسِم على .
خطوة 5.5.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.5.4
بسّط .
خطوة 5.5.4.1
أعِد كتابة بالصيغة .
خطوة 5.5.4.2
اضرب في .
خطوة 5.5.4.3
جمّع وبسّط القاسم.
خطوة 5.5.4.3.1
اضرب في .
خطوة 5.5.4.3.2
ارفع إلى القوة .
خطوة 5.5.4.3.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.5.4.3.4
أضف و.
خطوة 5.5.4.3.5
أعِد كتابة بالصيغة .
خطوة 5.5.4.3.5.1
استخدِم لكتابة في صورة .
خطوة 5.5.4.3.5.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.5.4.3.5.3
اجمع و.
خطوة 5.5.4.3.5.4
ألغِ العامل المشترك لـ .
خطوة 5.5.4.3.5.4.1
ألغِ العامل المشترك.
خطوة 5.5.4.3.5.4.2
أعِد كتابة العبارة.
خطوة 5.5.4.3.5.5
بسّط.
خطوة 5.5.4.4
أعِد كتابة بالصيغة .
خطوة 5.5.4.5
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 5.5.4.6
أعِد ترتيب العوامل في .
خطوة 5.5.5
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 5.5.6
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 6
بسّط ثابت التكامل.