حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (1+x)(yd)x+(1-y)xdy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
أخرِج العامل من .
خطوة 3.1.3
ألغِ العامل المشترك.
خطوة 3.1.4
أعِد كتابة العبارة.
خطوة 3.2
اضرب في .
خطوة 3.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
أخرِج العامل من .
خطوة 3.4.4
ألغِ العامل المشترك.
خطوة 3.4.5
أعِد كتابة العبارة.
خطوة 3.5
انقُل السالب أمام الكسر.
خطوة 3.6
طبّق خاصية التوزيع.
خطوة 3.7
اضرب في .
خطوة 3.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.8.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.8.2
ألغِ العامل المشترك.
خطوة 3.8.3
أعِد كتابة العبارة.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
قسّم الكسر إلى عدة كسور.
خطوة 4.2.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
ألغِ العامل المشترك.
خطوة 4.2.3.2
اقسِم على .
خطوة 4.2.4
تكامل بالنسبة إلى هو .
خطوة 4.2.5
طبّق قاعدة الثابت.
خطوة 4.2.6
بسّط.
خطوة 4.2.7
أعِد ترتيب الحدود.
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.3
تكامل بالنسبة إلى هو .
خطوة 4.3.4
طبّق قاعدة الثابت.
خطوة 4.3.5
بسّط.
خطوة 4.3.6
أعِد ترتيب الحدود.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .