إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
ألغِ العامل المشترك لـ .
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
ألغِ العامل المشترك.
خطوة 3.1.3
أعِد كتابة العبارة.
خطوة 3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
اجمع و.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
بسّط العبارة.
خطوة 4.3.2.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 4.3.2.2
اضرب الأُسس في .
خطوة 4.3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.2.2
اضرب .
خطوة 4.3.2.2.2.1
اضرب في .
خطوة 4.3.2.2.2.2
اضرب في .
خطوة 4.3.3
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 4.3.4
تكامل بالنسبة إلى هو .
خطوة 4.3.5
بسّط.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
خطوة 5.1
اضرب كلا المتعادلين في .
خطوة 5.2
بسّط كلا المتعادلين.
خطوة 5.2.1
بسّط الطرف الأيسر.
خطوة 5.2.1.1
بسّط .
خطوة 5.2.1.1.1
اجمع و.
خطوة 5.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 5.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 5.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 5.2.2
بسّط الطرف الأيمن.
خطوة 5.2.2.1
بسّط .
خطوة 5.2.2.1.1
بسّط كل حد.
خطوة 5.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 5.2.2.1.1.2
اضرب .
خطوة 5.2.2.1.1.2.1
اضرب في .
خطوة 5.2.2.1.1.2.2
اضرب في .
خطوة 5.2.2.1.2
بسّط بالضرب.
خطوة 5.2.2.1.2.1
طبّق خاصية التوزيع.
خطوة 5.2.2.1.2.2
اضرب في .
خطوة 5.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.4
أخرِج العامل من .
خطوة 5.4.1
أخرِج العامل من .
خطوة 5.4.2
أخرِج العامل من .
خطوة 5.4.3
أخرِج العامل من .
خطوة 5.4.4
أخرِج العامل من .
خطوة 5.4.5
أخرِج العامل من .
خطوة 5.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.