حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (y-1/y)dx+(x+x/(y^2))dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.2
أعِد كتابة بالصيغة .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
اضرب في .
خطوة 1.3.6
اضرب في .
خطوة 1.3.7
اضرب في .
خطوة 1.3.8
أضف و.
خطوة 1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.5
أعِد ترتيب الحدود.
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أعِد ترتيب الحدود.
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 4
عيّن لتساوي تكامل .
خطوة 5
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
طبّق قاعدة الثابت.
خطوة 6
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 7
عيّن .
خطوة 8
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أوجِد مشتقة بالنسبة إلى .
خطوة 8.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 8.3.5
أعِد كتابة بالصيغة .
خطوة 8.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.3.8
اضرب في .
خطوة 8.3.9
اضرب في .
خطوة 8.3.10
اضرب في .
خطوة 8.3.11
أضف و.
خطوة 8.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 8.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 8.5.2
طبّق خاصية التوزيع.
خطوة 8.5.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 8.5.3.1
اضرب في .
خطوة 8.5.3.2
اجمع و.
خطوة 8.5.4
أعِد ترتيب الحدود.
خطوة 9
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
انقُل كل الحدود التي تحتوي على متغيرات إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
اطرح من كلا المتعادلين.
خطوة 9.1.2
اطرح من كلا المتعادلين.
خطوة 9.1.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.3.1
اطرح من .
خطوة 9.1.3.2
أضف و.
خطوة 9.1.3.3
اطرح من .
خطوة 9.1.3.4
أضف و.
خطوة 10
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
أوجِد تكامل كلا طرفي .
خطوة 10.2
احسِب قيمة .
خطوة 10.3
تكامل بالنسبة إلى هو .
خطوة 10.4
أضف و.
خطوة 11
عوّض عن في .
خطوة 12
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
طبّق خاصية التوزيع.
خطوة 12.2
اجمع و.