إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.2
أعِد ترتيب و.
خطوة 2
خطوة 2.1
عيّن التكامل.
خطوة 2.2
أوجِد تكامل .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط.
خطوة 2.3
احذف ثابت التكامل.
خطوة 2.4
استخدِم قاعدة القوة اللوغاريتمية.
خطوة 2.5
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 3
خطوة 3.1
اضرب كل حد في .
خطوة 3.2
بسّط كل حد.
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1
أخرِج العامل من .
خطوة 3.2.2.2
ألغِ العامل المشترك.
خطوة 3.2.2.3
أعِد كتابة العبارة.
خطوة 3.2.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4
اضرب في بجمع الأُسس.
خطوة 3.4.1
انقُل .
خطوة 3.4.2
اضرب في .
خطوة 3.4.2.1
ارفع إلى القوة .
خطوة 3.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.3
أضف و.
خطوة 4
أعِد كتابة الطرف الأيسر في صورة نتيجة اشتقاق حاصل الضرب.
خطوة 5
عيّن التكامل في كل طرف.
خطوة 6
أوجِد تكامل الطرف الأيسر.
خطوة 7
خطوة 7.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 7.3
بسّط الإجابة.
خطوة 7.3.1
أعِد كتابة بالصيغة .
خطوة 7.3.2
بسّط.
خطوة 7.3.2.1
اجمع و.
خطوة 7.3.2.2
ألغِ العامل المشترك لـ .
خطوة 7.3.2.2.1
ألغِ العامل المشترك.
خطوة 7.3.2.2.2
أعِد كتابة العبارة.
خطوة 7.3.2.3
اضرب في .
خطوة 8
خطوة 8.1
اقسِم كل حد في على .
خطوة 8.2
بسّط الطرف الأيسر.
خطوة 8.2.1
ألغِ العامل المشترك لـ .
خطوة 8.2.1.1
ألغِ العامل المشترك.
خطوة 8.2.1.2
اقسِم على .
خطوة 8.3
بسّط الطرف الأيمن.
خطوة 8.3.1
احذِف العامل المشترك لـ و.
خطوة 8.3.1.1
أخرِج العامل من .
خطوة 8.3.1.2
ألغِ العوامل المشتركة.
خطوة 8.3.1.2.1
اضرب في .
خطوة 8.3.1.2.2
ألغِ العامل المشترك.
خطوة 8.3.1.2.3
أعِد كتابة العبارة.
خطوة 8.3.1.2.4
اقسِم على .