إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة.
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
بسّط.
خطوة 1.4.1
أضف و.
خطوة 1.4.2
أعِد ترتيب الحدود.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
خطوة 4.3.2.1
اطرح من .
خطوة 4.3.2.2
أضف و.
خطوة 4.3.3
ألغِ العامل المشترك لـ .
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
اقسِم على .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
تكامل بالنسبة إلى هو .
خطوة 5.2
بسّط الإجابة.
خطوة 5.2.1
بسّط.
خطوة 5.2.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
بسّط كل حد.
خطوة 6.2.1
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 6.2.2
اضرب .
خطوة 6.2.2.1
اجمع و.
خطوة 6.2.2.2
اجمع و.
خطوة 6.3
طبّق خاصية التوزيع.
خطوة 6.4
ألغِ العامل المشترك لـ .
خطوة 6.4.1
ألغِ العامل المشترك.
خطوة 6.4.2
أعِد كتابة العبارة.
خطوة 6.5
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
طبّق قاعدة الثابت.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 11.3.3
مشتق بالنسبة إلى يساوي .
خطوة 11.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.5
اضرب في .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
خطوة 11.5.1
طبّق خاصية التوزيع.
خطوة 11.5.2
أعِد ترتيب الحدود.
خطوة 12
خطوة 12.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 12.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.2
اطرح من كلا المتعادلين.
خطوة 12.1.3
جمّع الحدود المتعاكسة في .
خطوة 12.1.3.1
أعِد ترتيب العوامل في الحدين و.
خطوة 12.1.3.2
اطرح من .
خطوة 12.1.3.3
أضف و.
خطوة 12.1.3.4
اطرح من .
خطوة 12.1.3.5
أضف و.
خطوة 13
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.4
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 13.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.6
بسّط.
خطوة 13.6.1
اضرب في .
خطوة 13.6.2
اضرب في .
خطوة 13.7
تكامل بالنسبة إلى هو .
خطوة 13.8
أعِد كتابة بالصيغة .
خطوة 14
عوّض عن في .
خطوة 15
خطوة 15.1
بسّط كل حد.
خطوة 15.1.1
طبّق خاصية التوزيع.
خطوة 15.1.2
اضرب .
خطوة 15.1.2.1
اضرب في .
خطوة 15.1.2.2
اضرب في .
خطوة 15.2
أعِد ترتيب العوامل في .