إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.4
انقُل إلى يسار .
خطوة 1.5
مشتق بالنسبة إلى يساوي .
خطوة 1.6
اضرب في .
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
خطوة 4.3.2.1
اضرب في .
خطوة 4.3.2.2
أعِد ترتيب و.
خطوة 4.3.2.3
أضف الأقواس.
خطوة 4.3.2.4
أضف الأقواس.
خطوة 4.3.2.5
أعِد ترتيب و.
خطوة 4.3.2.6
أعِد ترتيب و.
خطوة 4.3.2.7
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 4.3.2.8
أضف و.
خطوة 4.3.3
ألغِ العامل المشترك لـ .
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 4.3.5
احذِف العامل المشترك لـ و.
خطوة 4.3.5.1
أخرِج العامل من .
خطوة 4.3.5.2
ألغِ العوامل المشتركة.
خطوة 4.3.5.2.1
أخرِج العامل من .
خطوة 4.3.5.2.2
ألغِ العامل المشترك.
خطوة 4.3.5.2.3
أعِد كتابة العبارة.
خطوة 4.3.6
افصِل الكسور.
خطوة 4.3.7
حوّل من إلى .
خطوة 4.3.8
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
تكامل بالنسبة إلى هو .
خطوة 5.3
بسّط.
خطوة 5.4
بسّط كل حد.
خطوة 5.4.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.4.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.4.3
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 6
خطوة 6.1
اضرب في .
خطوة 6.2
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 6.3
طبّق قاعدة الضرب على .
خطوة 6.4
ألغِ العامل المشترك لـ .
خطوة 6.4.1
أخرِج العامل من .
خطوة 6.4.2
ألغِ العامل المشترك.
خطوة 6.4.3
أعِد كتابة العبارة.
خطوة 6.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.6
اضرب في .
خطوة 6.7
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
خطوة 8.1
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
أضف و.
خطوة 12
خطوة 12.1
أوجِد تكامل كلا طرفي .
خطوة 12.2
احسِب قيمة .
خطوة 12.3
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 12.3.1
افترض أن . أوجِد .
خطوة 12.3.1.1
أوجِد مشتقة .
خطوة 12.3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 12.3.2
أعِد كتابة المسألة باستخدام و.
خطوة 12.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 12.5
استبدِل كافة حالات حدوث بـ .
خطوة 13
عوّض عن في .
خطوة 14
خطوة 14.1
اجمع و.
خطوة 14.2
اجمع و.