حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية ydx+(2x+1-xy)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.3
اضرب في .
خطوة 2.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
أضف و.
خطوة 2.6.2
أعِد ترتيب الحدود.
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
اطرح من .
خطوة 4.3.3
أخرِج العامل من .
خطوة 4.3.4
أعِد كتابة بالصيغة .
خطوة 4.3.5
أخرِج العامل من .
خطوة 4.3.6
أعِد كتابة بالصيغة .
خطوة 4.3.7
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
اقسِم على .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+-
خطوة 5.2.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+-
خطوة 5.2.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+-
++
خطوة 5.2.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+-
--
خطوة 5.2.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+-
--
-
خطوة 5.2.6
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 5.3
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.4
طبّق قاعدة الثابت.
خطوة 5.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.6
تكامل بالنسبة إلى هو .
خطوة 5.7
بسّط.
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في .
خطوة 6.3
طبّق خاصية التوزيع.
خطوة 6.4
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
طبّق قاعدة الثابت.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 11.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 11.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 11.3.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 11.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 11.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.7
مشتق بالنسبة إلى يساوي .
خطوة 11.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.9
اضرب في .
خطوة 11.3.10
اضرب في .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.1
طبّق خاصية التوزيع.
خطوة 11.5.2
أعِد ترتيب الحدود.
خطوة 11.5.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.3.1
طبّق خاصية التوزيع.
خطوة 11.5.3.2
انقُل إلى يسار .
خطوة 11.5.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.5.3.3.1
أخرِج العامل من .
خطوة 11.5.3.3.2
ألغِ العامل المشترك.
خطوة 11.5.3.3.3
أعِد كتابة العبارة.
خطوة 11.5.3.4
أعِد كتابة بالصيغة .
خطوة 11.5.4
أضف و.
خطوة 11.5.5
أعِد ترتيب العوامل في .
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 12.1.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.2.1
اطرح من .
خطوة 12.1.2.2
أضف و.
خطوة 12.1.2.3
أضف و.
خطوة 12.1.2.4
اطرح من .
خطوة 12.1.3
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 12.1.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.4.1
اقسِم كل حد في على .
خطوة 12.1.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.4.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 12.1.4.2.2
اقسِم على .
خطوة 12.1.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.4.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 12.1.4.3.2
اقسِم على .
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
أعِد كتابة بالصيغة .
خطوة 13.4
أعِد كتابة بالصيغة .
خطوة 13.5
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 13.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 13.7.1
اضرب في .
خطوة 13.7.2
اضرب في .
خطوة 13.8
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 13.8.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 13.8.1.1
أوجِد مشتقة .
خطوة 13.8.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 13.8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 13.8.1.4
اضرب في .
خطوة 13.8.2
أعِد كتابة المسألة باستخدام و.
خطوة 13.9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.10
تكامل بالنسبة إلى هو .
خطوة 13.11
أعِد كتابة بالصيغة .
خطوة 13.12
استبدِل كافة حالات حدوث بـ .
خطوة 14
عوّض عن في .
خطوة 15
أعِد ترتيب العوامل في .