حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية 2x(1+y^2)dx-y(1+2x^2)dy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2
أخرِج العامل من .
خطوة 3.2.3
ألغِ العامل المشترك.
خطوة 3.2.4
أعِد كتابة العبارة.
خطوة 3.3
اجمع و.
خطوة 3.4
انقُل السالب أمام الكسر.
خطوة 3.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.6
اجمع و.
خطوة 3.7
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
أخرِج العامل من .
خطوة 3.7.2
أخرِج العامل من .
خطوة 3.7.3
ألغِ العامل المشترك.
خطوة 3.7.4
أعِد كتابة العبارة.
خطوة 3.8
اجمع و.
خطوة 3.9
انقُل السالب أمام الكسر.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
أوجِد مشتقة .
خطوة 4.2.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.2.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.2.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.2.1.5
أضف و.
خطوة 4.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اضرب في .
خطوة 4.2.3.2
انقُل إلى يسار .
خطوة 4.2.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.5
تكامل بالنسبة إلى هو .
خطوة 4.2.6
بسّط.
خطوة 4.2.7
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.3
اضرب في .
خطوة 4.3.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1.1
أوجِد مشتقة .
خطوة 4.3.4.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.4.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.4.1.3.3
اضرب في .
خطوة 4.3.4.1.4
أضف و.
خطوة 4.3.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.5.1
اضرب في .
خطوة 4.3.5.2
انقُل إلى يسار .
خطوة 4.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.7.1
اجمع و.
خطوة 4.3.7.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.7.2.1
أخرِج العامل من .
خطوة 4.3.7.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.7.2.2.1
أخرِج العامل من .
خطوة 4.3.7.2.2.2
ألغِ العامل المشترك.
خطوة 4.3.7.2.2.3
أعِد كتابة العبارة.
خطوة 4.3.7.3
انقُل السالب أمام الكسر.
خطوة 4.3.8
تكامل بالنسبة إلى هو .
خطوة 4.3.9
بسّط.
خطوة 4.3.10
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب كلا المتعادلين في .
خطوة 5.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.1
اجمع و.
خطوة 5.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 5.2.1.1.2.2
أخرِج العامل من .
خطوة 5.2.1.1.2.3
ألغِ العامل المشترك.
خطوة 5.2.1.1.2.4
أعِد كتابة العبارة.
خطوة 5.2.1.1.3
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.3.1
اضرب في .
خطوة 5.2.1.1.3.2
اضرب في .
خطوة 5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.1
اجمع و.
خطوة 5.2.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.2.1.3
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.3.1
اجمع و.
خطوة 5.2.2.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.2.1.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.3.3.1
أخرِج العامل من .
خطوة 5.2.2.1.3.3.2
ألغِ العامل المشترك.
خطوة 5.2.2.1.3.3.3
أعِد كتابة العبارة.
خطوة 5.2.2.1.4
انقُل إلى يسار .
خطوة 5.2.2.1.5
طبّق خاصية التوزيع.
خطوة 5.2.2.1.6
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.6.1
اضرب في .
خطوة 5.2.2.1.6.2
اضرب في .
خطوة 5.2.2.1.7
اضرب في .
خطوة 5.3
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 5.4
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 5.5
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.6
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.7
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.7.1
أعِد كتابة المعادلة في صورة .
خطوة 5.7.2
اضرب كلا الطرفين في .
خطوة 5.7.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.7.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.7.3.1.1
ألغِ العامل المشترك.
خطوة 5.7.3.1.2
أعِد كتابة العبارة.
خطوة 5.7.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.7.4.1
أعِد ترتيب العوامل في .
خطوة 5.7.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 5.7.4.3
أعِد ترتيب العوامل في .
خطوة 5.7.4.4
اطرح من كلا المتعادلين.
خطوة 5.7.4.5
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
بسّط ثابت التكامل.
خطوة 6.2
اجمع الثوابت مع الزائد أو الناقص.