حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية e^(x^3)(3x^2y-x^2)dx+e^(x^3)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.6
اضرب في .
خطوة 1.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.8
أضف و.
خطوة 1.9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.9.1
أعِد ترتيب عوامل .
خطوة 1.9.2
أعِد ترتيب العوامل في .
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد ترتيب عوامل .
خطوة 2.4.2
أعِد ترتيب العوامل في .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 4
عيّن لتساوي تكامل .
خطوة 5
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
طبّق قاعدة الثابت.
خطوة 6
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 7
عيّن .
خطوة 8
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أوجِد مشتقة بالنسبة إلى .
خطوة 8.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 8.3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 8.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 8.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 8.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.5.1
أعِد ترتيب الحدود.
خطوة 8.5.2
أعِد ترتيب العوامل في .
خطوة 9
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1.1
أعِد الكتابة.
خطوة 9.1.1.2
بسّط بجمع الأصفار.
خطوة 9.1.1.3
طبّق خاصية التوزيع.
خطوة 9.1.1.4
أعِد الترتيب.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1.4.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 9.1.1.4.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 9.1.1.4.3
أعِد ترتيب العوامل في .
خطوة 9.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.1
اطرح من كلا المتعادلين.
خطوة 9.1.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.2.1
اطرح من .
خطوة 9.1.2.2.2
أضف و.
خطوة 10
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
أوجِد تكامل كلا طرفي .
خطوة 10.2
احسِب قيمة .
خطوة 10.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 10.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 10.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 10.4.1.1
أوجِد مشتقة .
خطوة 10.4.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 10.4.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 10.4.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 10.4.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 10.4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 10.4.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.4.1.4.1
أعِد ترتيب عوامل .
خطوة 10.4.1.4.2
أعِد ترتيب العوامل في .
خطوة 10.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 10.5
طبّق قاعدة الثابت.
خطوة 10.6
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 10.6.1
أعِد كتابة بالصيغة .
خطوة 10.6.2
استبدِل كافة حالات حدوث بـ .
خطوة 11
عوّض عن في .
خطوة 12
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
اجمع و.
خطوة 12.2
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1
أعِد ترتيب و.
خطوة 12.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.2.3
اجمع و.
خطوة 12.2.4
اجمع البسوط على القاسم المشترك.
خطوة 12.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.3.1
انقُل إلى يسار .
خطوة 12.3.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 12.3.2.1
أخرِج العامل من .
خطوة 12.3.2.2
أخرِج العامل من .
خطوة 12.3.2.3
أخرِج العامل من .