إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة.
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
انقُل إلى يسار .
خطوة 1.4
بسّط.
خطوة 1.4.1
أضف و.
خطوة 1.4.2
أعِد ترتيب الحدود.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
انقُل إلى يسار .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
احسِب قيمة .
خطوة 2.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.3
اضرب في .
خطوة 2.6
بسّط.
خطوة 2.6.1
أضف و.
خطوة 2.6.2
أعِد ترتيب الحدود.
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 4
عيّن لتساوي تكامل .
خطوة 5
خطوة 5.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.2
طبّق قاعدة الثابت.
خطوة 5.3
طبّق قاعدة الثابت.
خطوة 5.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5.6
اجمع و.
خطوة 5.7
بسّط.
خطوة 5.8
أعِد ترتيب الحدود.
خطوة 6
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 7
عيّن .
خطوة 8
خطوة 8.1
أوجِد مشتقة بالنسبة إلى .
خطوة 8.2
أوجِد المشتقة.
خطوة 8.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.3
احسِب قيمة .
خطوة 8.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.3
انقُل إلى يسار .
خطوة 8.4
احسِب قيمة .
خطوة 8.4.1
اجمع و.
خطوة 8.4.2
اجمع و.
خطوة 8.4.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.4.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.4.5
اجمع و.
خطوة 8.4.6
اجمع و.
خطوة 8.4.7
ألغِ العامل المشترك لـ .
خطوة 8.4.7.1
ألغِ العامل المشترك.
خطوة 8.4.7.2
اقسِم على .
خطوة 8.5
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 8.6
بسّط.
خطوة 8.6.1
أضف و.
خطوة 8.6.2
أعِد ترتيب الحدود.
خطوة 9
خطوة 9.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 9.1.1
اطرح من كلا المتعادلين.
خطوة 9.1.2
اطرح من كلا المتعادلين.
خطوة 9.1.3
جمّع الحدود المتعاكسة في .
خطوة 9.1.3.1
اطرح من .
خطوة 9.1.3.2
أضف و.
خطوة 9.1.3.3
اطرح من .
خطوة 9.1.3.4
أضف و.
خطوة 10
خطوة 10.1
أوجِد تكامل كلا طرفي .
خطوة 10.2
احسِب قيمة .
خطوة 10.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 11
عوّض عن في .
خطوة 12
خطوة 12.1
بسّط كل حد.
خطوة 12.1.1
اجمع و.
خطوة 12.1.2
اجمع و.
خطوة 12.1.3
اجمع و.
خطوة 12.2
أضف و.
خطوة 12.2.1
أعِد ترتيب و.
خطوة 12.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.2.3
اجمع و.
خطوة 12.2.4
اجمع البسوط على القاسم المشترك.
خطوة 12.3
بسّط بَسْط الكسر.
خطوة 12.3.1
أخرِج العامل من .
خطوة 12.3.1.1
أخرِج العامل من .
خطوة 12.3.1.2
اضرب في .
خطوة 12.3.1.3
أخرِج العامل من .
خطوة 12.3.2
انقُل إلى يسار .
خطوة 12.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.5
اجمع و.
خطوة 12.6
اجمع البسوط على القاسم المشترك.
خطوة 12.7
بسّط بَسْط الكسر.
خطوة 12.7.1
انقُل إلى يسار .
خطوة 12.7.2
طبّق خاصية التوزيع.
خطوة 12.7.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 12.7.4
اضرب في .
خطوة 12.8
اجمع البسوط على القاسم المشترك.